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Kink Dynamics in the ϕ4 Model with Extended
Impurity

M. I. Fakhretdinov, K. Y. Samsonov, S. V. Dmitriev, E.G. Ekomasov

The ϕ4 theory is widely used in many areas of physics, from cosmology and elementary
particle physics to biophysics and condensed matter theory. Topological defects, or kinks, in
this theory describe stable, solitary wave excitations. In practice, these excitations, as they
propagate, necessarily interact with impurities or imperfections in the on-site potential. In this
work, we focus on the effect of the length and strength of a rectangular impurity on the kink
dynamics. It is found that the interaction of a kink with an extended impurity is qualitatively
similar to the interaction with a well-studied point impurity described by the delta function,
but significant quantitative differences are observed. The interaction of kinks with an extended
impurity described by a rectangular function is studied numerically. All possible scenarios of
kink dynamics are determined and described, taking into account resonance effects. The inelastic
interaction of the kink with the repulsive impurity arises only at high initial kink velocities. The
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dependencies of the critical and resonant velocities of the kink on the impurity parameters are
found. It is shown that the critical velocity of the repulsive impurity passage is proportional to
the square root of the barrier area, as in the case of the sine-Gordon equation with an impurity.
It is shown that the resonant interaction in the ϕ4 model with an attracting extended impurity,
as well as for the case of a point impurity, in contrast to the case of the sine-Gordon equation, is
due to the fact that the kink interacts not only with the impurity mode, but also with the kink’s
internal mode. It is found that the dependence of the kink final velocity on the initial one has
a large number of resonant windows.

Keywords: Klein –Gordon equation, kink, impurity, resonant interaction

1. Introduction

The most studied nonlinear differential equations belonging to the class of Klein –Gordon
equations (KGE) are the ϕ4 and sine-Gordon equations (SGE) [1, 2]. For example, the ϕ4 model
is widely used in many areas of physics, from cosmology and elementary particle physics to
biophysics and condensed matter physics, as well as in chemistry [1–7]. A new impetus to the
study of this equation in recent years has been given by its use to describe physical processes
in graphene [8–10]. Although the solutions of these two equations have much in common, there
are also significant differences. For example, in the ϕ4 model, unlike the integrable sine-Gordon
model [3], kinks and antikinks cannot simply pass through each other. Instead, they interact and
undergo dynamic processes, including scattering, bound state formation, and even resonances,
where the kink’s internal mode plays an important role [11–16].

In recent years, a number of works have been carried out on kink collisions for KGE with
higher-order polynomial onsite potentials [15, 17–25]. Kinks in ϕ6 models are interesting because
they can move and collide in two different sectors, while kinks in models with even higher-order
potentials have power-law tails.

For a more accurate description of real systems, it is often necessary to modify these equa-
tions by introducing additional terms into them or to consider the coefficients as functions of
coordinates and time [1–3, 26–31]. For example, the presence of impurities is often considered
when solving a modified KGE, i. e., inhomogeneity of the parameter in front of the Klein –Gor-
don potential. For SGE, this problem has been studied quite fully. The dynamics of the kink
and the generation of localized waves for models with point and extended impurities were con-
sidered, taking into account one or several impurities; the influence of the parameters describing
the inhomogeneity function was studied [1, 32–38].

Much less has been done so far for the ϕ4 model with impurities. It was shown that a single
point impurity is capable of scattering or capturing kinks, as well as generating a localized
impurity mode [2, 39, 40]. In [41], the dynamics of kinks was considered for a model with a single
extended impurity having Gaussian or Lorentzian spatial profiles. However, the structure of the
dynamic kink and the influence of the impurity parameters on the critical velocity of passage over
the impurity and the resonant velocity of reflection from the attracting impurity have not been
studied in detail. Qualitative agreement of the obtained results with the case of point impurities
is shown, but also a significant quantitative effect of the impurity profile on the shape of the
localized impurity mode and kink scattering on impurities were observed. In [42], the dynamics
of solitons on an extended single rectangular impurity was considered. It was found in [43] that
oscillons naturally arise as a result of kink–antikink collisions in the presence of a Gaussian-type
impurity.
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In [44], the ϕ4 model with an impurity described by the hyperbolic function was considered
to show the similarity between oscillons and oscillational mode in the perturbed ϕ4 model. Kink
dynamics and the role that quasinormal modes can play in kink–antikink collisions for the case
of small perturbation of the ϕ4 model with the deformed potential was considered in [45].

In this work, we consider the dynamics of kinks in a model with an extended rectangular
impurity, taking into account the generation of internal modes of oscillations and localized waves,
and compare them with the results obtained earlier for SGE with an impurity of the same type.

2. Governing equations and solution method

Let us consider a scalar field u(x, t) for which the equation of motion in the one-dimensional
case has the form

utt − uxx +K(x)
(
u2 − 1

)
u = 0, (2.1)

where K(x) is a function of the x coordinate, taking into account the presence of impurities in
the system. For K(x) ≡ 1 Eq. (2.1) is an equation of the unperturbed ϕ4 model and has a kink
solution [2]:

u(x, t) = tanh
x− v0t√
2
(
1− v20

) , (2.2)

where 0 � v0 < 1 is the parameter that determines the initial speed of the kink. For an arbitrary
function K(x), Eq. (2.1) can only be solved numerically. Let us consider, for definiteness, a simple
case well studied for the case of SGE, namely, K(x) in the form of one extended rectangular
impurity:

K(x) =

⎧
⎪⎨

⎪⎩

1, for x < −W

2
and x >

W

2
,

1−ΔK, for − W

2
� x � W

2
,

(2.3)

where ΔK and W are the impurity strength and length, respectively. From a physical point of
view, the choice of the impurity profile in the form (2.3) is more suitable for describing extended
inhomogeneities with sharp boundaries. This choice of the impurity also allows one to answer
the question of how the impurity shape affects the results of the kink dynamics and to compare
the results obtained for the ϕ4 and SGE models.

The equation of motion (2.1) was solved numerically by the method of lines [46] on the space-
time domain x ∈ [−60, 60], t ∈ [0, 2000]. A step along the spatial coordinate is Δx = 0.025.
The second spatial derivatives discretized with respect to the variable x using fourth-order finite
differences are

∂2ui
∂x2

≈ 1

12Δx2
(−ui−2 + 16ui−1 − 30ui + 16ui+1 − ui−2) +O

(
Δx4

)
.

The time step was automatically selected by the calculation program to ensure the absolute
accuracy of integration of the resulting system of differential equations of 10−8. A kink of the
form (2.2) with initial coordinate x0 = −10 was taken as the initial solution for t = 0. It was
launched with different initial velocities v0 in the direction of the impurity and its dynamics was
observed. Absorbing boundary conditions were used to get rid of the radiation arising from the
interaction of a kink with an impurity.
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3. Kink dynamics in the case of a potential barrier

Consider first the case of ΔK < 0. As shown for the case of point impurities [2, 3], if ΔK < 0,
then the repulsive impurity is an effective potential barrier for the kink. Two possible scenarios
of kink motion are observed in simulations. If the initial kink velocity v0 does not exceed some
critical value vcrit, then the kink is reflected from the potential barrier and moves in the opposite
direction (curve 1 in Fig. 1). If the initial velocity of the kink is v0 � vcrit, then the kink passes
through the potential barrier (curve 2 in Fig. 1). The found critical velocity for the case shown
in Fig. 1 is equal to vcrit ≈ 0.46.

In both cases, after passing through or reflecting from the impurity, the kink continues to
move with the constant final velocity vf . To find the final velocity of the kink vf after interaction
with the impurity, one can use the slope of the kink trajectory, approximated by the line y =
= vf t+ y0.

Fig. 1. Time dependence of the kink center coordinate, Xc(t), at ΔK = −0.5 and W = 1.0. Curves 1
and 2 are for v0 = 0.3 and v0 = 0.5, respectively. The dashed line shows the impurity center, the dotted
lines show its boundaries

At initial kink velocities v0 close to vcrit, it can move in the impurity region for a considerable
time before being reflected from it or leaving the impurity passing through it. In contrast to [41],
we determined the critical velocity of the kink as a result of a long numerical run up to times t =
= 2000 after the first crossing of the impurity. If the kink trajectory remains straight, then it
is assumed that it leaves the impurity. The lowest initial velocity at which the kink passes the
potential barrier is the critical velocity vcrit.

The critical velocity vcrit depends on the values of ΔK and W (see Fig. 2). It can be seen
that, with a decrease in the barrier height ΔK, the critical velocity vcrit required to pass it
smoothly decreases. With an increase in the barrier width W , a greater speed vcrit is required
to pass it.

For the interaction of the SGE kink with extended rectangular impurities, it was shown that
the critical impurity passage velocity is a linear function of the root of the impurity area (in our
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Fig. 2. Dependence of the critical velocity vcrit of impurity passage by a kink on the parameter ΔK

Fig. 3. Dependence of the critical velocity vcrit of impurity passage by a kink on
√
W |ΔK| for ΔK < 0

(potential barrier). The critical velocity is nearly proportional to
√
W |ΔK|

case it is
√

W |ΔK|) [47]. The resulting dependence of the critical velocity on
√

W |ΔK| is shown
in Fig. 3. The R-squared value for the regression line is close to unity, and therefore the critical
velocity of the barrier passage can be approximately described by the formula vcrit ≈ c

√
W |ΔK|,

where c is a constant (c ≈ 0.55 for the case in Fig. 3).
Graphs of vf (v0) for different ΔK and W = 1.0 are shown in Fig. 4. The two dashed

lines are shown for reference: vf = v0 and vf = −v0. It can be seen that the kink interacts
with the impurity nearly elastically, since the final kink velocity after reflection is vf ≈ −v0 and
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Fig. 4. Dependence of the final velocity of the kink after interaction with the barrier at different values
of the parameter ΔK for W = 1.0

Fig. 5. Time evolution of u at the impurity center, x = 0, for different values of the initial kink velocity v0
for the parameters of the impurity ΔK = −0.5 and W = 1.0

after passing through the barrier, the kink moves with almost the same velocity as the initial
one, vf ≈ v0.

The degree of elasticity of the kink-impurity inflection can also be seen from the field function
at the center of the impurity as the function of time, u(x = 0, t), which is presented in Fig. 5
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for three different values of the kink initial velocity v0. Oscillations at the impurity center after
reflection (see curve 1) and transmission (curve 2) are absent for not very high kink initial velocity
and appear only at relatively high values of v0 (see curve 3). In [41], this effect was also described
for extended Gaussian impurities. As will be shown below, this fundamentally distinguishes the
case of an impurity in the form of a potential barrier from the case of an impurity in the form
of a potential well.

A noticeable difference in the initial and final speeds arises only at high initial kink velocities
and large values of the ΔK parameter (see line 3 for ΔK = −1 in Fig. 4). This can be explained
by the fact that, after a collision with a high barrier, the kink’s internal oscillation mode is
excited for which a part of the kinetic energy of the kink is spent. A kink carrying a vibrational
mode emits small amplitude waves, which noticeably affects its velocity. Note that the kink’s
internal (pulsation) mode is calculated as a change in the width of the kink during motion. The
kink width is conveniently defined in our simulations as the maximal value of ux, umax

x . The
dynamics of the kink for the case of high initial velocity is shown in Fig. 6, where the emission
of small amplitude waves after the collision of the kink with the barrier can be seen. Localized
oscillations at the potential barrier are not excited (the impurity center is at x = 0).

Fig. 6. Dependence u(x, t) when a kink with a high initial velocity v0 = 0.7 passes through a potential
barrier with parameters ΔK = −1 and W = 1.0

The dependences of the final kink velocity on the initial one in other cases, for example,
for W = 0.5 and W = 1.5, are qualitatively similar; only the value of the critical velocity for the
transition from reflection to transmission at v0 � vcrit changes. Also, the larger the parameter W ,
the less elastic is the kink-impurity interaction at high initial kink velocities v0.

4. The case of a potential well

As shown for the case of point impurities [2, 3], if ΔK > 0, then the attractive impurity
is an effective potential well for the kink. For ΔK > 0, not two, but three scenarios of kink
motion have already been observed, both for the case of a point and for an extended Gaussian-
type attractive impurity [2, 39, 41]. If the initial kink velocity v0 does not exceed some critical
value vcrit, then, in most cases, the kink is captured by the potential well (see curve 1 in Fig. 7
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Fig. 7. Time dependence of the kink center coordinate, Xc(t), at ΔK = 0.5 and W = 1.0. Curve 1 —
v0 = 0.05, curve 2 — v0 = 0.2, and curve 3 — v0 = 0.11874

obtained for v0 = 0.05, ΔK = 0.5, and W = 1.0). If the initial velocity of the kink is v0 � vcrit,
then the kink always passes through the potential well (see curve 2 in Fig. 7, obtained for v0 = 0.2,
ΔK = 0.5, and W = 1.0). At certain initial velocities v0 < vcrit, an interesting phenomenon
occurs, namely, resonant reflection of a kink from an attractive potential well (curve 3 in Fig. 7
obtained for v0 = 0.11874, ΔK = 0.5, and W = 1.0) [2, 39, 41]. After passing through or
reflecting from the potential well, the kink continues to move with the constant final velocity vf .

The main difference between the interaction of a kink with a potential well from interaction
with a barrier, as in the case of the sine-Gordon equation [1, 2], is that the interaction of a kink
with a well is more inelastic. The reason is that the localized oscillations arise on the well, and,
as it was mentioned above, they are not excited on a barrier. This is a channel for the loss of a
part of the kink’s kinetic energy in addition to the loss to the excitation of the kink’s internal
mode. The excitation of the mode localized on the impurity during kink interaction with a well
is clearly seen on the function u(0, t), see Fig. 8 and compare it with Fig. 5 for the case of an
impurity in the form of a potential barrier.

The critical velocity of the kink passing through the impurity, vcrit, just as in the case
of impurity in the form of a potential barrier considered above, depends on the values of the
parameters ΔK and W . This dependence is shown in Fig. 9 for ΔK > 0 (potential well), which
complements Fig. 2 plotted for negative ΔK (potential barrier). As the absolute value of ΔK
increases, the critical velocity increases. With the increase in the length of the impurity, W , vcrit
also increases. An increase in |ΔK| and W affects the critical velocity more strongly for the case
of a potential barrier, ΔK < 0. In the case of ΔK > 0, the vcrit(ΔK) curves begin to grow with
zero derivative, in contrast to the potential barrier case shown in Fig. 2.
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Fig. 8. Dependence u(0, t) for ΔK = 0.5, W = 1.0 and initial kink velocities (a) v0 = 0.05, kink pinning
on the impurity, curve 1 (b) v0 = 0.2, kink passage through the impurity, curve 2, and (c) v0 = 0.11874,
resonance reflection of the kink from the impurity, curve 3

Fig. 9. Dependence of the critical velocity vcrit of impurity passage by a kink on the parameters ΔK at
different W

After passing through the potential well, the kink continues to move with a constant final
velocity vf . A typical dependence of the final kink velocity vf on the initial velocity v0 is shown

RUSSIAN JOURNAL OF NONLINEAR DYNAMICS



10 M. I. Fakhretdinov, K.Y. Samsonov, S. V.Dmitriev, E.G. Ekomasov

Fig. 10. Dependence of the final kink velocity on the initial velocity at ΔK = 0.5 and W = 1. The
dashed line is the vf = v0 line. The final velocity is positive for v0 > vcrit ≈ 0.13377 (passage of the kink
through the potential well) and zero otherwise (capture of the kink by the well). The resonant reflection
windows are not visible here due to the large step of scanning the v0 values. They are revealed in Fig. 12
using a smaller step

in Fig. 10, where the dashed line is the line vf = v0. At low initial velocities, the kink is pinned
by the potential well and oscillates around it, losing kinetic energy and slowing down (see curve 1
in Fig. 7). At a speed greater than the critical one, the kink leaves the impurity region.

For the sine-Gordon equation with point and extended impurities and for the ϕ4 equation
with point impurities [1, 2, 36, 39, 48], for the dependence of the final velocity on the initial
velocity at v0 > vcrit the formula v2f = c

(
v20 − v2crit

)
was proposed, where c is a constant de-

pending on impurity parameters. It can be evaluated whether this formula is applicable to the

ϕ4 model with an extended impurity. To do this, we calculate
v2f

v20−v2crit
as the function of v0

for the case ΔK = 0.5 and W = 1, for which vcrit ≈ 0.13377 (see Fig. 11). It can be seen

that
v2f

v20−v2crit
≈ 0.9 for v0 < 0.4 and deviates from this constant value for larger initial velocities.

The dependence of the kink final velocity on the initial velocity features a large number of
resonant windows in the range v0 < vcrit, see Fig. 12. This result was obtained for ΔK = 0.5

and W = 1 for which vcrit ≈ 0.13377. The initial velocity is scanned in increments of 10−5. In
most cases, in the v0 < vcrit region, the final velocity is either zero (kink capture) or negative (kink
reflection), with two exceptions, when vf > 0 (the kink passes through the potential well after
three times crossing it, see Fig. 13). It can be seen that the windows form groups if we consider
the envelopes of the minimum values of the final velocity in the windows. In windows, vf is
highly sensitive to v0. The first five windows cover the following v0 ranges: [0.11846, 0.11912],
[0.12160, 0.12223], [0.12385, 0.12435], [0.12553, 0.12586], and [0.12684, 0.12702].

Interestingly, two special values of the resonant velocity with positive vf in the region v0 <

< vcrit are observed at v0 = 0.12435 and v0 = 0.13323. In these cases (quasitunneling) the kink
crosses the center of the impurity three times, see the kink trajectory shown in Fig. 13.
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Fig. 11. Dependence of v2
f

v2
0−v2

crit
on the initial kink velocity. The function is nearly constant for v0 < 0.4

Fig. 12. Dependence of the final kink velocity on the initial kink velocity in the region of resonant
reflection windows. The case of ΔK = 0.5 and W = 1 for which vcrit ≈ 0.13377

Another interesting dynamic scenario is when the time between the second and third inter-
actions of a kink with an impurity is much longer than the time between the first and second
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Fig. 13. A rare special case (quasitunneling) of the dependence of the kink center coordinate on time
at v0 = 0.12435, which is in the region v0 < vcrit, but the final velocity of the kink is positive. In this
case, the kink passes through the potential well three times before leaving it

Fig. 14. Time dependence of the kink center coordinate at v0 = 0.11913, which is close to the edge of the
resonant reflection window

interactions, see Fig. 14. For the first time, the kink leaves the potential well with a negative
velocity, insufficient to overcome the attraction to the well, and enters the well again to be cap-
tured. In this case, the time between the second and third collisions of the kink with the well is
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longer than between the first and second collisions. This scenario is typical for the initial kink
velocities close to the edges of the resonance windows. Similar behavior was found for the case
of a point impurity [39].

Let us dwell on the cases when the kink crosses the potential well twice and is reflected
from it, i. e., cases of resonant reflection windows [2, 39]. To explain such behavior in the case
of a point impurity, the following mechanism was proposed [39]. During the first pass, the kink
loses part of its kinetic energy to excite the mode localized on the potential well and the kink’s
internal vibrational mode. With a reduced kinetic energy, the kink cannot overcome attraction
to the potential well and passes through it again. On the second pass, some energy is resonantly
transferred to the translational kink mode from these localized vibrational modes, giving it
enough momentum to leave the potential well.

Figure 15 shows the dependences u(0, t) and umax
x (t). The first shows the excitation of the

vibrational mode localized on the impurity, and the second shows the change in the width of
the kink with time and reveals the kink’s internal vibrational mode. One can see the excitation
of both localized modes as a result of the first collision of the kink with the impurity: both
curves begin to oscillate. The second collision of the kink with the impurity leads to a decrease
in the amplitudes of both localized vibrational modes. Part of the vibrational energy of these
modes is resonantly transformed into a translational kink mode and the kink is reflected from
the impurity.

Fig. 15. Dependencies u(0, t) (red line) and umax
x (t) (blue line). Simulation parameters correspond to

the resonant reflection of the kink by the potential well. Oscillations of u(0, t) reveal the excitation of
the vibrational mode localized on the impurity, and oscillations of umax

x (t) reveal the excitation of the
kink’s internal mode. The moments of the first and second collisions of the kink with the potential well
are shown by vertical dashed lines

RUSSIAN JOURNAL OF NONLINEAR DYNAMICS
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Let us denote by T12 the time between the first and the second passages of the impurity by
the kink. In the work [39], a formula was proposed for finding T12 for resonant windows in the
case of a point impurity:

T12 =
a

√
v2crit − v20

+ b, (4.1)

where the coefficients a and b are calculated so as to satisfy the values for the first window. Let
us see how this formula works for the case of an extended rectangular impurity in the form of the
potential well. In the case considered above, the critical velocity at which the kink always passes
through the impurity is vcrit ≈ 0.13377 and the values of the parameters for ΔK = 0.5, W = 1
are a ≈ 2.6, b ≈ 4.2. Table 1, for the first five windows, lists the left and right boundaries of the
resonance windows,

[
vl0, v

r
0

]
and the average value of the initial velocity in the window, vm0 =

=
vl0+vr0

2 . Table 1 also presents the numerically found values of T12 and the corresponding values
calculated using Eq. (4.1). It can be seen that Eq. (4.1) describes quite well the time between the
first two collisions of the kink with an impurity, but with an increase in the resonance window
number, the discrepancy between the numerically calculated value of T12, and that calculated
by Eq. (4.1) increases.

Table 1. For the first five resonance windows, presented are: the left and right boundaries of the resonant
windows, vl0, vr0 , the average value of the initial velocity in the window, vm0 =

vl
0+vr

0

2 , the numerically
found values of T12 and the corresponding values calculated using Eq. (4.1)

n vl0 vr0 vm0 T12, numer. T12, Eq. (4.1)
1 0.11846 0.11912 0.11879 46.51099 46.5135
2 0.12160 0.12223 0.12191 51.76572 51.4831
3 0.12385 0.12435 0.12410 56.96791 56.3576
4 0.12553 0.12586 0.12570 62.16787 61.1314
5 0.12684 0.12702 0.12693 67.41481 65.9036

In the works [37, 48] it was shown that, for SGE with point and extended impurities, the
condition for resonant reflection can be written as follows:

T12(V ) = nT + τ, (4.2)

where T = 2π
ωim

is the oscillation period of the impurity mode (ωim is its frequency), τ is the
bias phase, and n is an integer. To analyze the possibility of applying Eq. (4.2) in our case,
we considered the resonant reflection of a kink at v0 = 0.12875, when oscillations of rather
large amplitude arise on the impurity and, at the same time, after reflection it moves long
enough to analyze the internal mode of the kink. The oscillation period for the impurity mode
practically does not depend on the kink initial velocity and is equal to Tim ≈ 4.67 for the case
under consideration, ΔK = 0.5 and W = 1.0. The oscillation period for the kink’s internal
mode Tpulse ≈ 5.13

(
approximately equal to 2π√

3/2

)
is much closer to the value 5.23 equal to

the difference between T12 for different windows from Tab. 1. That is, Eq. (4.2), as well as in
the model with a point impurity [39], is not suitable for predicting resonance windows if for T
we take the period of the impurity mode Tim, but it can predict the resonant windows with
reasonable accuracy if we take for T the period of the kink’s internal mode T = Tpulse. This is
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due to the fact that, in contrast to SGE, in the ϕ4 model the kink interacts not only with the
impurity mode, but also with the kink’s internal mode.

5. Conclusions

The interaction of kinks with an extended impurity described by a rectangular function is
studied numerically. The numerical method used makes it possible to carry out calculations for
a sufficiently long time to unambiguously describe the scenario of the kink-impurity interaction
and to find the accurate value of the critical velocity required for the passage of a kink through
an impurity. All possible scenarios of kink dynamics are determined and described, taking into
account resonance effects.

In the case of repulsive impurities that are potential barriers, as in the case of point impuri-
ties [37, 39, 48] and extended impurities described by Gaussian or Lorentzian functions, the kink
can either be reflected or transmitted depending on the initial velocity. For low velocities, the
interaction of the kink with the potential barrier is almost elastic. The inelastic interaction of
the kink with the repulsive impurity arises only at high initial kink velocities. After the passage
of the kink, oscillations at the impurity center appear only at high initial velocities and quickly
decay. In this case, the internal vibration modes of the kink are also excited. It is shown that
the critical velocity of the barrier passage is proportional to the square root of the barrier area,
as in the case of the sine-Gordon equation with an impurity, see Fig. 3.

Attractive impurities can capture the kink or, after several oscillations under the conditions
of the resonance process, reflect or transmit it. In this case, a mode localized on the impurity
is excited. An interesting feature of the resonant reflection of a kink is the strong dependence
of its final velocity on the initial velocity, i. e., a very small change in its initial velocity causes
a noticeable change in the final velocity of the kink, see Fig. 12.

It is shown that, for the dependence of the final kink velocity on the initial one, the formula
proposed for the sine-Gordon equation with attracting impurities is applicable.

As in the case of a point impurity [39], it was found that the dependence of the kink final
velocity on the initial one has a large number of resonant windows. It is shown that for the case of
extended impurity it is possible to use the formula proposed earlier for the case of a point impurity
to find the time between the first and second interactions of the kink and the impurity. However,
with an increase in the resonance window number, the discrepancy between the numerically
calculated value of this time and that calculated by the formula begins to increase.

Special cases of kink dynamics called quasi-resonance, described for the case of point im-
purities, were not observed between the resonant windows in our simulations. However, similar
behavior of the kink, for the case of extended impurity, was found for v0 close to the edges of
the resonant windows, see Fig. 14.

Special values of the resonant velocity of quasi-tunneling were also found, at which the kink,
having a velocity less than the critical one, passes through the impurity, see Fig. 13.

It is shown that the resonant interaction in the ϕ4 model with an extended impurity, as well
as for the case of a point impurity, in contrast to the case of the SGE, are due to the fact that
the kink interacts not only with the impurity mode, but also with the kink’s internal mode.

Overall, in our work, we describe in detail the quantitative differences in the dynamics
of a kink interacting with a rectangular extended impurity compared to point impurities and
extended impurities described by Gaussian or Lorentzian functions [37, 39, 48].
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