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The paper presents theoretical studies on the domain wall energy losses that arise when it moves through the magnetic defect
region. These losses are largely related to the generation of localized magnetization waves in the defect region. It is shown that the
process of the domain wall energy scattering on the defect can be regarded as a new “channel of damping” for a domain wall. The
study was carried out using numerical and analytical methods through the example of a three-layer model of the ferromagnetic
structure, in which the intermediate layer differs in its physical parameters from the rest of the crystal. The intermediate layer
(or magnetic defect) was simulated by a spatial modulation of the magnetic parameters. The modes of motion, in which
“effective damping” is minimal, were calculated. The damping value depends on the excitation energy of the localized waves and
is determined by the ratio of the defect properties and initial velocity of the domain wall motion. It is specifically shown that
an increase in the domain wall energy loss is associated with the increase in the localized waves oscillations amplitude. In this
case, the dependence of the localized waves oscillations amplitude on the domain wall initial velocity only has one maximum.
It is at this point that the domain wall energy losses are maximal. They can be significantly reduced if the domain wall velocity
is noticeably higher or lower than the maximum. This behavior was studied for both the point and extended defects.
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TeHepanysa 10KanM30BaHHBIX MATHUTHBIX HEOTHOPOAHOCTEN
Ha fedeKTax KaK HOBBIV KaHAJI 3aTyXaHUs
LA ABVDOKYILENICA JOMEHHOM IPaHMIIbI
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B pabote TeopeTudecky U3y4aroTcs IIOTEPY SHEPIMY JOMEHHON IpaHUIbI, KOTOPbIe BO3HUKAIOT IIPY ee IBVDKEHNN Yepes3 00-
JIACTh MaTHUTHOTO AedekTa. TV OTepy BO MHOI'OM CBSA3aHbI C FeHepalllieli IOKa/I30BaHHbIX BO/TH HAMarHIYeHHOCTH B 00-
mactn fiepexta. B paboTe mokasaHo, YTO IpoIIeCcC paccesHIA SHEPTUY IOMEHHOT TPaHMIIBI Ha lepeKTe MOYKHO pacCMaTpuBaTh
KaK HOBBIII «KaHaJI 3aTyXaHNUs» UL JOMEHHOM IpaHuLbl. ViccrenoBanme IpoBOAMIOCH C IIOMOLIBIO YMC/IEHHBIX I aHA/IUTIYe-
CKJX MeTOJOB Ha IIpUMepe TPeXC/IONHOI Mofeny (peppOMarHUTHON CTPYKTYPBL, B KOTOPOJL IPOMEXYTOYHBIIL C/I0I OT/IIYa-
eTcs PpU3MYeCKVIMY ITapaMeTpaMy OT OCTa/IbHOTO KpyucTtasuia. [TpoMexXyTouHbII C0it (111 MarHUTHBII leheKT) MOmempo-
BAJICA C TIOMOIIBIO TPOCTPAHCTBEHHONM MOAY/IALMY MaTHUTHBIX ITapaMeTPOB. PaccunTaHbl pe>XMMBI BVKEHN S, TPYU KOTOPBIX
«3pPeKTNBHOE 3aTyXaHNe» MITHUMAIbHO. BelmurHa aToro 3aTyXaHNA 3aBUCUT OT SHEPTYM BO3OY KIEHNA TOKaMM30BaHHBIX
BOJIH U OIpefe/IsIeTCA COOTHOLIEHMeM CBOJICTB fedeKTa 1 Hada/IbHOI CKOPOCTI ABVDKEHMA HOMEHHOI IpaHuLbl. B yacTHO-
CTH, IIOKA3aHO, YTO YBe/IMYeHNEe IOTepPb SHEPIUY JJOMEHHOJI I'PaHMIIBI CBA3aHO C yBe/IMYeHMeM aMIUIATY/bI KojeOaHmii ToKa-
JIM30BAHHBIX BOMH. IIpy 9TOM 3aBMCMMOCTD aMIDINTY/bI KOTTeOaHMII TOKa/IM30BaHHBIX BOJIH OT HaYaIbHOM CKOPOCTH JJOMEH-
HOJI TPaHUIIBI IMEET TONBKO OfVH MaKCHMyM. VIMEHHO B 9TOJ TOYKe ITOTEPU SHEPTUM JOMEHHOI TPAHMIIBI MaKCHMaybHbI.
VIX MO>XKHO CyIIIeCTBEHHO YMEHBIINTD, €C/IU CKOPOCTD ABVDKEHMS JJOMEHHOII TPaHMIIBI 3aMEeTHO OOJIbIIle V1M MEeHbIlle MaKCU-
MyMa. [laHHOe TIOBefIeHNe PaCCUNTEIBANIOCH KaK I CTydas TOYeTHOTO, TaK ¥ J/IA CITydast IIPOTKEHHOTO fedeKTa.

KnroueBble c1oBa: joOMeHHas TPAaHUL[A, yPABHEHe CHHYC-TOpIOHA, TPEXCIIONHBI MATHETHUK, TeHepaLisl MATHUTHBIX COJIMTOHOB, Mar-
HUTHBI Opusep.
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1. Introduction

The recent surge of interest in magnetic solitons and breathers
has been associated with the emergence of new experimental
techniques that allow one to study the formation and
propagation processes of nanometer-sized localized
magnetization waves and their interaction with domain
walls (DWs) [1-11]. Defects are good nucleation centers
for the formation of localized magnetic inhomogeneities.
The occurence of defects in magnetic materials is caused
by the presence of structural and chemical inhomogeneities
that break the perfect translational symmetry [12, 13].
The presence of such defects leads to the occurence of
local changes in the material parameters. In particular, in
magnets local inhomogeneities of magnetic anisotropy
(LIMA) and the exchange interaction parameter can form
[12-18]. The change in magnetic parameters of the material
in the defect region results in the change in the magnetic
inhomogeneities structure, and in this region a distortion
of the domain structure characteristic of the entire sample
is observed. The experimental observation of such domain
structure distortions is based on a method of determining
defects in a crystal. When a DW passes through the region
containing a defect, a part of its energy is expended on the
excitation of localized magnetic inhomogeneities [19-21].
If there are many defects in the magnetic material, then
the moving DW expends a lot of energy on the excitation
of localized nonlinear magnetization waves and we can
conclude about the presence of a new damping channel. It
is significant that this issue has scarcely been studied in the
literature. The classic term responsible for the damping of
the magnetization vector in the Landau-Lifshitz equation
is associated with the excitation of linear spin waves in a
magnetic [13]. Also, multilayer magnetic structures that
are of interest for practical applications are widely studied
today [22]. They can represent periodically alternating
layers of materials with different physical properties. It is
instructive to study the dynamics of spin waves and magnetic
inhomogeneities propagating in such systems. In the case
of the magnetic inhomogeneities dynamics, perpendicular
to the interfaces of the layers, one-dimensional models are
often used [13]. The study of simple one-dimensional models
is also important since it allows one to understand the
effect of certain magnetic parameters on the process under
consideration in real magnetic structures. When studying
the magnetization dynamics with similar objectives, the
presence of layers different from each other in the value of one
or several magnetic parameters is often taken into account by
the spatial modulation of the material magnetic parameters
(see, for example, [19-21, 23]). In this case, the study of
magnetic inhomogeneities in one-dimensional dynamics,
under certain conditions, leads to finding a solution of the
sine-Gordon type equation with variable coefficients that is
encountered in many fields of modern physics [13, 24 -28].
The study was carried out using numerical and analytical
methods [29-32]. Due to the complexity of the problem,
the researchers considered, as a rule, the modulation of only
certain magnetic system parameters. For instance, they often
took into account the magnetic anisotropy modulation both
for the case of point and extended defects [21, 33]. It is shown

that when a DW passes through a thin magnetic layer with a
lower anisotropy value, high-amplitude localized nonlinear
waves of magnetization can arise in it [19, 33, 34]. The
amount of energy expended on the excitation of localized
waves determine the effective damping of the moving DW
and can vary depending on the DW initial velocity. It is
known that the frequency of the localized nonlinear waves
excited in this case is practically independent of the DW
initial velocity. But the velocity should effect the amplitude
of the excited wave. In the present work, the structure,
dynamics, and energy of localized nonlinear magnetization
waves excited by the domain walls motion in a three-layer
ferromagnetic structure have been studied.

2. Basic equations and results

A simple three-layer ferromagnetic structure consisting of
two thick layers separated by a thin layer with a modified
value of the anisotropy parameter is observed in the paper.
The anisotropy parameter is assumed to be a function of the
coordinate x directed perpendicular to the layers interface.
Thus, there is one magnetic «defect» in the system located
in the yz plane. The localized magnetic inhomogeneities
and the domain wall are located in the yz plane. Let us
use spherical coordinates of the magnetization vector
M(cos ¢ sin 0, sin ¢, cos ¢ cos 0), where 0 is the angle in the yz
plane between the direction of the magnetic moment vector
and the axis of light magnetization (Oz axis), ¢ is the angle
describing the exit of M from the domain boundary plane.
Taking into account the exchange interaction, uniaxial
anisotropy, Zeeman energy in the ferromagnetic energy
density, and assuming that ¢ =1, the equation of motion for
the magnetization in the angular variables can be represented
in the following dimensionless form [23]:
0’0 9’0 K(x) 00

—_— sin26 =—hsinf —a—. 1
o o’ ot )

When substituting u =20, equation (1) is the modified
sine-Gordon equation (MSGE), K(x) is the function describing
the inhomogeneity of the anisotropy parameter,  is the value
of the external magnetic field directed along the z axis, and
« is the value of the damping parameter. The coordinate x
is normalized to the quantity J,, where §, is the width of a
static Bloch DW, the time ¢ is normalized to J,/c, where c is
the limiting Walker velocity of stationary motion of the DW
[12]. Let us consider the DW dynamics taking into account
the possibility of localized magnetization waves excitation in
the defect region during motion by inertia (h=a=0). First
we consider the simplest case K(x)=1-¢ed(x), where §(x) is
the Dirac delta function, ¢ is the constant that determines the
change in the anisotropy parameter on the point defect. Then,
for small ¢, using the perturbation theory for the coordinates
of the DW-center X=X(¢) and the amplitude localized at the
magnetization wave defect a=a(t), the following system of
equations is obtained (see, for example, [35]):

8X (1) +U'(X)+a()F'(X) =0 2)
a(r) +Qa(t) + %gF(X) =0

where the following notations are introduced:
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sinh X (¢)
cosh’ X(¢)’

sinh® X (¢) -1

Flx=2 cosh® X(¢)

F'(X)=-2
and the «impurity mode» frequency is defined as:
O?=1-¢/4. (3)

The system of equations (2) is a system of ordinary second-
order differential equations. It is much easier to analyze than
the original equation (1). The first equation of system (2)
describes the dynamics of the DW taking into account
the presence of a defect and the magnetic inhomogeneity
localized on it. The second equation of system (2) describes
the dynamics of the localized magnetic inhomogeneity
taking into account the presence of a defect and the DW. At
present, the effect of localized waves on the DW dynamics
is thoroughly studied [13, 23]. We shall consider next the
problem of the DW energy losses on the excitation of the
localized magnetization waves on defects as the problem of a
new damping channel for a moving DW.

2.1. Dynamics of nonlinear waves localized in the
defect region

As has been shown before, at the scattering of a DW by a
defect a part of its energy is expended on the excitation of a
nonlinear magnetization wave localized in the defect region,
or a «magnetic breather» (if the DW leaves the defect) [21,
33, 34]. Moreover, the magnitude of this energy can vary
depending on the initial velocity of the DW v . Since the
frequency of the excited wave is practically independent of
v, [35], v, can have an effect on its amplitude.

First, we shall consider the simplest case — the case of a
point defect in the framework of model (2). From integration
of equation (2) it can be seen that the breather oscillations
amplitude can vary significantly (Fig. S1, supplementary
material). Suppose that in this model the DW moves at a
constant velocity v, and X(0) =~-10. If we neglect the effect
of the defect on the domain wall dynamics, then X(¢) can be
written in the dimensionless form:

X, () =v,t-10. (4)

If we take into account the effect of the defect, neglecting
only the localized wave excitation, then, by analogy with the
solutions described in [36], the law of the DW motion can be
represented in the form:

2
N 2
X, (¢)=arsinh U°—+g/ sinh(v,t —10) |.

Ly

(5)

The graphs of the X(f) dependence corresponding to
(4) - (5) are shown in Fig. 1a,b, from which it can be seen
that these dependences differ little for large values of v,
(see curves 3 in Figs. 1a,b). However, in the region of small
values of v, dependence (5) shows a better qualitative
correspondence to the results of numerical simulation (see
curves 1 in Fig. 1a,b).

Since the first collective coordinate X(t) is described by
formula (4), system (2) is reduced to a single equation for
a(t):

a+Q’a=F(1), (6)

where
, sinh(X(?))

FO=¢ @y

)
Thus, this problem can be regarded as the excitation of
a harmonic oscillator by external impulse F(¢). The F(t)
dependence for certain particular cases is shown in Fig. 1¢,d.
In this case, the initial conditions are as follows:

X(0)=-10, X(0)=v,, a(0)=0, a(0)=0.

To study (4)-(7) we use the Runge-Kutta numerical
integration method. The time evolution a(f) obtained is
shown in Fig. S2 (supplementary material) from which
it can be seen that the oscillations amplitude a(f) differs
considerably in the case of small v,. We also calculate the
oscillations maximum amplitude A__ of the breather for
cases (4) and (5) and compare it with the values obtained by
numerical integration of the initial system (2). Fig. 2 shows
that when v,— 1, and the energy of the excited breather is
much less than the total energy of the DW, both laws of the
DW motion (4) and (5) describe well the calculations of
the initial system (2). However, for small v, when the laws
of motion differ significantly (see Figs. 1a,b, curves 1), the
law of motion X(#) =X (f) (5) provides much more accurate
results, and is therefore used in further calculations.

Using the law of conservation of energy, an analytic
expression for the breather vibrations amplitude for the case
of a point defect can be found. Let the localized vibrational
mode be given in the form [36]:

304X 304X 031 F 3 / 031F 32 J
3 3 0.2 0.2
20 2 20 2
0.1 0.1
10 10 0.0 0.0
1 0.1 0.1
0 f e e O --ffommmmme e
0.2 0.2
t t t t
10 . -10 03 . ‘ . .03

0 25 50 75 100 0 25 50 75 100

a b

0 25 50 75 100 0 25 50 75 100

c d

Fig. 1. The dependences X(¢) = X, (¢) (a) and X(#) = X,(t) (b) constructed according to expressions (4) and (5), respectively, and the dependence
of F(t) for X(t) = X,(#) (c) and X(¢) = X,(t) (d) constructed according to expression (7). The parameters e=0.7: 1) v,=0.2,2) v,=0.5, 3) v, =0.7.
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u(x,t) = B(t) exp (—¢|x|/2), (8)

where B(t) =a, cos (Qt+6)), Q is the frequency of impurity
mode (3), and 6, is the initial phase. Then the energy stored
by the breather can be calculated as follows [37, 38]:

- 2 2 2 2
E,= %{Q{[%j + (%j +[1- 65(x)]u§n}dx = ano . (9)

Suppose that the variation of X(¢) is described by the solution
of [36]:

X(t) =arsinh (ysinh(v,f)). (10)

where y=./1+&/(2v;). Then the force acting on the
breather (oscillator) is given by the expression (taking into

account (7)):
1= &* Asinh(v,t)

= 11
1+ A” sinh(v,t) (11)

If we go over to the complex variable: £(f) =a+iQt, then the
oscillation equation (6) can be reduced to the form:

E-iQE(t) =fD), (12)
which has the solution [37]:
()= | f(r)e ™ dr, (13)

with the initial conditions a(—e)=a(-e)=0, i.e. the
oscillator (breather) is absent before the interaction. The total
energy transferred from the particle (DW) to the oscillator

(breather) can be found in the form [37]:

2 [—
ZU‘; £ |lcosh Qz .(14)
20, +¢ 2v,

Then from (9) and (14) we obtain the following expression
for the breather amplitude:

2.2 2 _
a§=2ﬂf sin?| 2 arecos 20‘; £ | eosh2| 22 - (15)
Q 2V vy +¢& 2v,

Expression (15) describes well the results obtained by
numerical integration of system (2) (Fig. 3). However,
the obtained dependences are very far from the breather
amplitude of model (1). Despite this, the nature of the
dependences is qualitatively the same: there is one maximum
onall curves in Fig. 3, which is supposedly related to the shape
ratio of external pulse F(t) and the shape of potential U(X).
And the maximum point depends on the defect parameters.

A similar behavior is also observed for the case of
extended defects, for example, of the form:

i

E, =2n’¢"sinh’ £ recos
2V

_ 1, X<Xy, X> X, +W,
K(x)_{l—AK, X, <x<x,+W,

where W is the width of the «<inhomogeneity» region of the
periodic potential the left boundary of which is at point x,.

From Fig. 4, which shows the dependence of the
maximum amplitude of the excited breather, it is seen that
there also is a single maximum on all curves. However, the
amplitude change is more significant in comparison with the
point defect.

(16)

A A
max max
0.6 0.6
0.4 04 2
2 3
0.2 i Z 0.2
v 1
0.0 , .1 0 0.0 .
03 06 09 0.3
a

3
19 19)
, 0 0.0 , . 0
0.6 09 03 06 09

Fig. 2. The maximum amplitude of the breather vibrations A _ as a function of the initial velocity of the DW v at e=0.3 (a), e=0.5 (b) and
£=0.7 (c) calculated by the numerical integration: 1) of equation (6) by the motion law of the DW (4), 2) of equation (6) by the motion law

of the DW (5), 3) of the equations system (2).

A A
max max maxg
0.6 0.6 0617 5
2
0.4 0.4-/{‘4&% 0.4-
Lo2e) 3
024 1 2 3 0.2- ] 021 gooooEEng
v %o, L
% nnnununnuun.zn 0 D:O
0,0£29020797998000,,0 00— — 00— . :
03 06 09 03 06 09 03 06 09
a C

Fig. 3. The maximum amplitude of the breather vibrations A as a function of the initial velocity of the DW v, at e=0.3 (a), e=0.5 (b) and
£=0.7 (¢), calculated: 1) from the analytical expression (15), 2) by integrating the equations system (2), 3) by the numerical simulation of

equation (1).
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0.64 A, rad

0.5- 5\
0.4 A Q

0.34
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0.2
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0.64 A
0.5

, rad 5
max
4/§
0.4 3

0.3
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01—
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0.0 : : . —
00 02 04 06 08

b

Fig. 4. The maximum amplitude of the breather A at the defect center of the form (16) as a function of the initial DW velocity v, and at
W=1 (a) and W=1.5 (b). Curves 1 -6 correspond to the cases AK=0.5, 0.75, 1, 1.25, 1.5, 1.75, respectively.

3. Conclusion

The study shows that the process of DW energy scattering
on a defect can be regarded as a new «channel of damping»
for a moving domain wall. The dependence of the magnetic
breather amplitude value on the initial velocity of the DW
with only one maximum on it is calculated. Since the increase
in the DW energy losses is associated with the increase in
the amplitude of the magnetic breather oscillations, then,
the energy losses are maximal at the DW critical velocity v,
corresponding to the maximum of this dependence. The DW
energy losses can be substantially reduced if the DW motion
velocity is noticeably different decreasingly or increasingly in
comparison with the critical one. Physically, the mechanism
is important in reducing energy losses on the excitation of
local magnetic inhomogeneities and can also be used to
describe the dynamics of the magnetic breathers excitation
in real crystals in which many small defects occur. Energy
losses during DW motion increase with increasing defect
parameters and are most noticeable in extended defects.

Acknowledgements.  The work was supported by
Act 211 Government of the Russian Federation, contract
02. A03.21.0011. For A.M. G. and R.V. K. the work was
supported by the RFBR grant, project 18-31-00122.

Supplementary Material. The on-line version of this paper
contains supplementary material (figures) available free of
charge at the journal’s Web site (www.lettersonmaterials.com).

References

1. K.S. Novoselov, S.V. Dubonos, S.V. Morozov,
D. V. D. Bergen, J. K. Maan, A.K. Geim. Int.]. Nanosci. 3,
87 (2004). DOI: 10.1142/S0219581X04001857

2. K.S. Novoselov, S.V. Dubonos, E. Hill, A.K. Geim.
Physica E Low Dimens Syst Nanostruct. 22, 406 (2004).
DOI: 10.1016/j.physe.2003.12.032

3. K.S. Novoselov, A.K. Geim, S.V. Dubonos,
E.W. Hill, I.V. Grigorieva. Nature. 426, 812 (2003).
DOI: 10.1038/nature02180

4. K.S. Novoselov, A.K. Geim, van der Berg, S. V. Dubonos,
J.K. Maan. IEEE Trans. Magn. 38, 2583 (2002).
DOI: 10.1109/TMAG.2002.801959

5. R. Kukreja, S. Bonetti, Z. Chen, D. Backes, Y. Acremann,

303

10.

11.

12.

13.

14.

15.

J.A. Katine, A.D. Kent, H.A. Diirr, H. Ohldag,
J. Stohr. Phys.Rev. Lett. PRL. 115, 096601 (2015).
DOI: 10.1103/PhysRevLett.115.096601

J.P. Tetienne, T. Hingant, ].V. Kim, L.H. Diez,
J.P. Adam, K. Garcia, J.F. Roch, S. Rohart, A. Thiaville,
D. Ravelosona, V. Jacques. Science. 344, 1366 (2014).
DOI: 10.1126/science.1250113

J. Rusz, S. Muto, J. Spiegelberg, R. Adam, K. Tatsumi,
D.E. Biirgler, C.M. Schneider. Nat. Commun. 7, 12672
(2016). DOI: 10.1038/ncomms12672

M.V. Gerasimov, M.V. Logunov, A.V. Spirin,
Yu.N. Nozdrin, I.D. Tokman. Phys.Rev. B. 94, 014434
(2016). DOI: 10.1103/PhysRevB.94.014434

A.V. Golovchan, V.V. Kruglyak, V.S. Tkachenko,
A.N. Kuchko. Royal Society open science. 5(1), 172285
(2018). DOI: 10.1098/rs0s.172285

L. Kavitha, E. Parasuraman, D. Gopi, A. Prabhu,

R.A. Vicencio. Journal of Magnetism
and  Magnetic = Materials. 401, 394  (2016).
DOI: 10.1016/j.jmmm.2015.10.021

L. Kavitha, A. Mohamadou, E. Parasuraman,
D. Gopi, N. Akila, A. Prabhu. Journal of

Magnetism and Magnetic Materials. 404, 91 (2016).
DOI: 10.1016/j.jmmm.2015.11.036

A. Hubert and R. Schafer. Magnetic Domains. Springer,
Heidelberg (1998) 720 p.

M.A. Shamsutdinov, V.N. Nazarov, I.U. Lomakina,
A.T. Kharisov, D.M. Shamsutdinov. Ferro- and
antiferromagnitodinamika. ~ Nonlinear  Oscillations,
wavesand solitons. Moscow, Nauka (2009) 456 p. (in
Russian) [M.A. Ilamcyramuos, J.1O. JlomakuHa,
B.H. Hasapos, A.T. Xapucos, I.M. IllamcyTauHOB.
Deppo- n anTUdeppomaranTofuHamMuka. HemueiiHble
KojmeOaHMs, BOTHBL U COMUTOHBL. Mocksa, Hayka (2009)
456 c.]

M. A. Shamsutdinov, V.G. Veselago, M.M. Farztdinov,
E.G. Ekomasov. Phys. Solid State. 32, 288 (1990).
(in Russian) [M.A. Hlamcyrpunos, B.I. Becenaro,
M.M. ®@apstaunos, E.I. Ekomacos. ®TT. 32(2), 497
(1990).]

V.V. Plavskii, M.A. Shamsutdinov,;E.G. Ekomaso
v, A.G. Davletbaev. Phys.Met. Metallogr. 75, 589
(1993). (in Russian) [B.B. ITmasckmii, E.I. Exomacos,
M. A. Illamcytnunos, A.T. laBrer6ae. DMM. 75(6), 26
(1993).]



16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Gumerov et al. / Letters on Materials 8 (3), 2018 pp. 299-304

Y. Sun, R.Gao. Solid State Commun. 149, 393 (2009).
DOI: 10.1016/j.55¢.2008.12.015

B.N. Filippov, M. N. Dubovik. Phys. Solid State. 56, 967
(2014). DOI: 10.1134/S1063783414050084

M.N. Dubovik, L.G. Korzunin, B.N. Filippov. The
Physics of Metals and Metallography. 116, 656 (2015).
DOI: 10.1134/S0031918X16040049

E.G. Ekomasov, A.M. Gumerov, R.R. Murtazin,
R.V. Kudryavtsev, A.E. Ekomasov, N.N. Abakumova.
Solid  State ~ Phenomena.  Switzerland.  Trans
Tech Publications. 233-234, 51 (2015).
DOI: 10.4028/www.scientific.net/SSP.233-234.51

E.G. Ekomasov, R.R. Murtazin, V.N. Nazarov. Journal
of Magnetism and Magnetic Materials. 385, 217 (2015).
DOI: 10.1016/j.jmmm.2015.03.019

E.G. Ekomasov, A.M. Gumerov. Letters on materials.
4(4), 237 (2014). (in Russian) [E.I. Exomacos,
A.M. I'ymepos. ITucbma o matepuanax. 4(4), 237 (2014).]
DOLI: 10.22226/2410-3535-2014-4-237-240

D.D. Tang, Yu.-J.Le. Magnetic Memory Fundamentals
and Technolog. Cambridge, Cambridge University Press,
New York (2010) 196 p.

E.G. Ekomasov, R.V. Kudryavtsev, A.M. Gumerov.
Letters on Materials. 7(2), 160 (2017). (in Russian)
[E.I. Exomacos, P.B. Kygmpsasues, A.M. Iymepos.
IMucbma o  martepmamax. 7(2), 160 (2017).]
DOI: 10.22226/2410-3535-2017-2-160-164

A.B. Borisov, V. V. Kiselev. Nonlinear waves, solitons and
localized structures in magnetic materials. T.1. Quasi-one-
dimensional magnetic solitons. UB RAS, Ekaterinburg
(2009) 512 p. (in Russian) [A.B. bopucos, B.B. Kucenés.
Henuneitnoie BOJIHbBI, COJIMTOHBI U JIOKA/IM30BaHHDbIC
CprKTypr B MarHetmkax. T.1. KBaSI/IOHHOMeprIe Mar-
HuTHble comuToHbl. YpO PAH, Exarepun6bypr (2009)
512 c.]

J. Cuevas-Maraver, P.G. Kevrekidis, F. Williams (Eds.).
The Sine-Gordon Model and Its Applications: From
Pendula and Josephson Junctions to Gravity and High-

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

304

energy Physics, V. 10. Springer (2014) 263 p.

J.A. Gonzilez, A. Bellorin, M.A. Garcia-Nustes,
L.E. Guerrero, S. Jiménez, L. Vazquez. Physics Letters A.
381(24),1995(2017).DOI:10.1016/j.physleta.2017.03.042
J.A. Gonzilez, A. Bellorin, L.E. Guerrero.
Physical ~Review E. 65(6), 065601  (2002).
DOI: 10.1103/PhysRevE.65.065601

V.A. Gani, A.E. Kudryavtsev. Physical Review E. 60(3),
3305 (1999). DOI: 10.1103/PhysRevE.60.3305
V.A. Gani, A.E. Kudryavtsev, M.A.
Physical Review D. 89(12), 125009
DOI: 10.1103/PhysRevD.89.125009

A. Askari, D. Saadatmand, K.
in Random and Complex Media.
DOI: 10.1080/17455030.2018.1439203
K. Javidan. Physical Review E. 78(4), 046607 (2008).
DOI: 10.1103/PhysRevE.78.046607

S.P.  Popov. Computational = Mathematics
Mathematical Physics. 58(3), 437
DOI: 10.1134/50965542518030107

E.G. Ekomasov, A.M. Gumerov, R.V. Kudryavtsev.
Letters on materials. 6(2), 138 (2016). (in Russian)

Lizunova.
(2014).

Javidan. Waves
1-14 (2018).

and
(2018).

[E.T. ExomacoB, A.M. Iymepos, P.B. Kynpasues.
IIucbma o  marepmamax. 6(2), 138  (2016).]
DOI: 10.22226/2410-3535-2016-2-138-140

E.G. Ekomasov, A.M. Gumerov,

R.V. Kudryavtsev. JETP Letters. 101, 835 (2015).
DOI: 10.1134/50021364015120061
E.G. Ekomasov, Sh.A. Azamatov,
Phys. Met. Metallogr. 105(4),
DOI: 10.1134/S0031918X08040017

T. Dauxois, M. Peyrard. Physics of Solitons. N.Y,
Cambridge University Press (2010).

Y. S. Kivshar, E Zhang, L. Vazquez. Phys. Rev. Lett. 67,1177
(1991). DOI: 10.1103/PhysRevLett.67.1177

O.M. Brown, J.S. Kivshar. The Frenkel-Kontorova model:
Concepts, methods, and applications. Springer (2004)
519 p.

R.R. Murtazin.
313 (2008).



