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a b s t r a c t

One-dimensional non-linear dynamics of domain walls (DW) under the influence of external constant

magnetic field in a two-layer ferromagnet with different values of magnetic anisotropy and exchange

parameters in the layers is theoretically studied in the article. Using analytical methods a motion

equation for the DW centre coordinate, its stationary velocity after transition from one layer to another

and its minimum velocity necessary for DW transition from one layer to another are found. It is shown

that for the case of small defects, the results obtained analytically are well coordinated with the

numerical ones.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

Photon and magnonic crystals have been widely researched
recently. They may be related to multilayer film structures (one-
dimensional superstructures) which are in fact alternating layers of
two materials with different physical properties. One-dimensional
models (sinusoidal and rectangular profile superlattices) are used to
describe the dynamics of linear and non-linear magnetization waves
in such layered structures [1–4]. For example, a rectangular profile
superlattice model describes a layered structure with alternation of
two different layers with one or several magnetic parameters,
whereas the transition from layer to layer occurs at a distance of
the atomic order. In the continuum model magnetic parameters of
such a ferromagnetic superlattice can be piecewise described by a
constant function which obtains a zero width of the transition area.
It should be noted that a local spatial modulation of magnetic
material parameters can be obtained in studying two- and three-
layer magnetic structures (e.g. [5–9]). A local spatial modulation of
magnetic parameters of material can be also received as applied in
external (mechanical, thermal or light) actions [10,11].

The influence of local and periodic one-dimensional spatial
modulation of magnetic parameters on the distribution pattern,
spectrum and damping of spin waves is well investigated [12,13].
Studying the one-dimensional dynamics of DW leads to searching
the solution for the modified sine-Gordon (SG) equation type with

a variable coefficient which is of great importance for modern
physics [14–16]. In a weakly inhomogeneous case it may be
considered that the presence of perturbations does not consider-
ably change the form of DW mainly affecting their dynamics. In a
strongly inhomogeneous case the form of DW must be changed
greatly and the excitation modes within their boundaries and
radiation of bulk spin waves should be expected. Due to the task
set, the authors considered the modulation of separate para-
meters of the magnetic system. For example, the modulation of
the magnetic anisotropy for two and three-layer magnet was
taken into account and studied both by analytical [5,8,9,17]
and numerical [6,18,19] methods. For a three-layer magnet the
modulation and an exchange parameter were also considered
[7,8,20,21]. In the article the influence of spatial modulation
parameters of magnetic anisotropy and exchange on the dynamics
of DW in a two-layer ferromagnet are investigated.

2. Formulation of the problem: equations of motion

Let us consider an infinite ferromagnet whose crystallographic
axes ða,b,cÞ coincide with the Cartesian coordinate axes ðx, y, zÞ.
Taking into account the exchange interaction, anisotropy, Zeeman
energy and damping in the magnet energy density, we can write
the motion equation for magnetization in angular variables of a
ferromagnetic vector m¼mð0, cos y, sin yÞ in the dimensionless
form [20]
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where y is an angle in the yz plane between the direction of the
magnetic moment vector m and the axis of easy magnetization
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(Oz axis), functions f(x) and g(x) determine spatial modulation of
magnet anisotropy and exchange constants, respectively; h is the
external magnetic field; a is the damping constant. The coordi-
nate x is normalized to the quantity d0, where d0 is the width of a
static Bloch DW, the time t is normalized to d0=c, where c is the
limiting Walker velocity of stationary motion of the DW [22]. Let
us consider the case of two-layer ferromagnet when the functions
f(x) and g(x) are described in a step form [6,17]

gðxÞ ¼
1þZ, xZ0,

1, xo0,

(
f ðxÞ ¼

1þe, xZ0

1, xo0

(
ð2Þ

It should be noted that the equation of the (1) type may be
obtained for weak ferromagnets and ferrites as well, where c is a
spin-wave velocity. Eq. (1) which is thoroughly studied today is a
modified SG equation with variable coefficients [14,15]. Although
there is a well-developed perturbation theory for this equation
[15,17,23,24], numerical methods are to be used for the given
case of arbitrary values of e and Z parameters [18,20,25,26].
The parameter of the system ð1þZÞ is always above zero. The
cases Z¼ a¼ h¼ 0 and 9e951 were considered earlier with the
help of the perturbation theory for solitons [17] whereas the case
where the parameter e takes arbitrary values was solved numeri-
cally in [18].

Let the Bloch DW (p-kink) be at the initial moment of time,

ykðx,0Þ ¼ 2 arctanðeðx�qÞÞ ð3Þ

where q is a coordinate of the DW centre. We search for the
analytical solving of Eq. (1) in a¼ h¼ 0 in the following form:
y¼ ysðx�qÞ. This function satisfies the boundary conditions that
ysðx-�1Þ¼ 0, ysðx-1Þ¼ p, y0sðx-71Þ¼ 0. Using the pertur-
bation theory for solitons [20] the motion equation for the DW
centre coordinate is searched as follows:
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where mn ¼
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ð@ys=@xÞ2 dx is the effective DW mass, with
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H(x)—Heaviside step function:

HðxÞ ¼
0, xo0

1, xZ0

(
ð6Þ

As a result we obtain the motion equation as

mn d2q

dt2
¼�ð2eþ2ZÞ sech2

ðqÞ ð7Þ

Eq. (7) allows to receive the dependences of velocity and DW
centre coordinates from time for different values of e and Z
parameters. At eþZZ0 elastic reflection from the area of the
local spatial modulation of magnetic parameters is observed
whereas at eþZr0 further velocity increase occurs.

When DW moving by inertia the law of energy conservation is
similarly [17] used for finding its steady velocity after transition
through the layer boundaries

M0c2
0

ð1�u2
0=c2

0Þ
1=2
¼

Mc2

ð1�u2=c2Þ
1=2

ð8Þ

where M0 and M are the effective DW masses, c0 and c are the
limiting velocities in the first and second layers of magnet. In our
case M=M0 ¼ ð1þeÞ1=2=ð1þZÞ1=2 and c=c0 ¼ ð1þZÞ1=2. After simple
transformation we have

u2 ¼ ð1þZÞ � ½1�ð1þZÞð1þeÞð1�u2
0Þ� ð9Þ

Note that the formula (9) at Z¼ 0 is transformed to the known
formula [17].

In case eþZ40 there exists a minimum DW velocity umin

necessary for passing through the boundary between the layers.
Physically it is explained by the fact that in overcoming the
barrier a part of the DW kinetic energy is spent on increasing its
potential energy due to value changes in the system parameters.
The minimum velocity value can be obtained from Eq. (9) by
equating the DW motion velocity to zero after passing through
the boundary between the layers

umin ¼ fðeþZþeZÞ=½ð1þZÞð1þeÞ�g1=2 ð10Þ

Note that the parameters e and Z amount the same in the
umin value.

3. Result of numerical calculations

Eq. (1) was solved numerically as well. The explicit scheme of
Eq. (1) integration was used [20]. At the starting point of time the
DW of the type (3) is set far from the boundary (or defect)
between the layers and moves with the initial speed u0. Discre-
tization of the equation was carried out according to the standard
five-point scheme of the ‘‘cross’’ type. For our calculations we
use a uniform grid with a step x in the coordinate x: fxi ¼ x � i,
i¼ 0,71, . . . ,7Nxg, and with a step t in the time t: ftn ¼ tn,
n¼ 0,1, . . . ,Ntg, where Nx and Nt are the numbers of grid points.
By satisfying the convergence condition of the explicit
scheme t=xr0:25, we calculated the angle y at the next moment
of time.

First let us consider the dynamics of DW passing by inertia
through the boundary between the layers. At the moment of DW
passing the boundary between the layers, low-amplitude waves
extending to the right and left of it appear, the boundary velocity
drops or rises and goes to a new stationary value. For the case of
low velocities and low values of Z and e parameters, the results
agree with each other rather well (Fig. 1).

In Fig. 2 the numerically obtained dependences of the sta-
tionary DW velocity from the Z and e parameters are shown. The
results received are similar to the ones obtained using the
formula (9). Some difference is explained by the fact that in
calculation the changes in the DW structure are taken into
account, thus, the velocity values are less than the analytical
ones. In Fig. 3 the dependence of the minimum velocity necessary
for DW passing the local spatial modulation of magnetic material
parameters from the Z and e parameters is given. At low Z and e
values the numerically obtained results coincide with the analy-
tical values of the (10) formula. At high Z and e parameters the
numerical umin value is considerably less than the analytical one.
It can be attributed by more accurate numerical account of
changes in the DW structure. The difference also lies in the fact
that in the numerical experiment the parameter e influences the
umin value more than the parameter Z.

The DW dynamics is considered under the influence of the
external constant magnetic field. It is known that in this case the
stationary DW velocity may be found by the formula [20]

u¼ w=ð1þw2Þ
1=2

ð11Þ

where w¼ h=a. While passing through the local spatial modula-
tion of magnetic material parameters the DW velocity after a long
period of time is to be quite constant and is equal to

un ¼ u0
ð1þZÞ � ð1þh2

Þ

1þeþh2

" #1=2

ð12Þ

From the formula (12) we obtain a simple dependence in case
e¼ 0: un ¼ u0 � ð1þZÞ1=2. In Fig. 4 the dependences un from the Z
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and e parameters are shown. The results of numerical calculations
and values of velocities determined by the formula (12) well
conform with each other. In Fig. 5 the comparison of minimum
velocities necessary for passing through the boundary between
the layers for the inertia cases and in the presence of the external
force is carried out. In both cases the results differ inconsiderably

which point out to a weak dependence from the external force
and damping.

Supplementary material related to this article can be found
online at http://dx.doi.org.10.1016/j.jmmm.2013.02.042.

In case uoumin, eþZ40 in DW moving by inertia its elastic
reflection of the step takes place which results in changes of its
direction to the opposite one. In ha0, aa0 the case of damping
oscillations in the transition area (or pinning of DW) is possible as
well (Fig. 6, see movie in Fig. 7). Here the radiation of low-
amplitude waves is observed either. The dependence of the
coordinate and velocity of the center of DW from time is

Fig. 1. (a) Dependence of the DW centre, (b) velocity and (c) width from time in

case u0 ¼ 0:1 (1—eþZ¼�0:05, 2—eþZ¼�0:1, 3—eþZ¼�0:2). Lines are Eq. (1)

solutions, dots are Eq. (7) solutions.

Fig. 2. Dependence of the stationary DW velocity from e (a) and Z (b) parameters.

u0 ¼ 0:6. Lines are values obtained by the formula (9), dots are results of numerical

calculations (a: 1—Z¼�0:2, 2—Z¼ 0, 3—Z¼ 0:2; b: 1—e¼�0:2, 2—e¼ 0,

3—e¼ 0:2).

Fig. 3. Dependence of minimum DW velocity umin, necessary for passage the

transition area from parameter e at a¼ h¼ 0 (1—Z¼�0:2, 2—Z¼�0:1, 3—Z¼ 0,

4—Z¼ 0:1, 5—Z¼ 0:2).
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presented in Fig. 8(a) and (b) for the case in Fig. 6. From the
figures we may conclude that the DW reaches the boundary of the
transition area only at the initial time. Then we obtain the case of
the asymmetric curve when the DW moves to the left under the
potential force arising from the presence of inhomogeneous
potential energy in the �area of the local spatial modulation of
magnetic material parameters and to the right due to the external
magnetic field. Further oscillations occur near this area and may
be considered harmonic after certain time ðt� 200Þ. The depen-
dence of the DW width from time may be analytically calculated

by the formula [20]

d¼
ffiffiffiffiffiffiffiffiffiffiffi
1�u2

p
ð13Þ

The numerical calculations show that the values of the DW width
in the steady motion to the step area coincide numerically and
analytically, however certain changes are observed in complex
oscillations of the DW width after passage the boundary of this area.
It is connected with the changes either in the velocity or the DW
structure. The presence of DW width oscillations after passing
through the boundary between the layers points to exciting internal

Fig. 4. Dependence of the limiting DW velocity from the e (a) and Z
(b) parameters, h¼0.015. Lines are values obtained by the formula (12), dots are

results of numerical calculations (a: 1—Z¼�0:2, 2—Z¼ 0, 3—Z¼ 0:2; b:

1—e¼�0:2, 2—e¼ 0, 3—e¼ 0:2).

Fig. 5. Dependence of the minimum DW velocity umin, necessary for passage the

transition area from the parameter e at Z¼ 0; for inertia cases a line is given

(a¼ h¼ 0) and for external force h¼0.015 dots are used.

Fig. 6. Dynamics of DW pinning in the transition area (defect) at Z¼ 1, e¼ 0,

h¼ 0:015 and u0 ¼ 0:6.

Fig. 7. Movie of dynamics of DW pinning in the transition area (defect) at Z¼ 1,

e¼ 0, h¼ 0:015 and u0 ¼ 0:6.

Fig. 8. Dependence of the coordinate q (a) and velocity u (b) of the DW centre from

time for the case in Fig. 6. The dashed line on the q(t) function is the boundary of

the transition area (defect).
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translation modes related to pulsation ones. In Fig. 9 the dependence
of frequency translation and pulsation modes of DW on the para-
meter h, calculated from the dependence of x(t) and dðtÞ is shown. As
seen from the figure, oT and op coincide whereas the dependence o
from h is similar to the form o� h1=2.

After the stop the DW structure is greatly changed as com-
pared to the homogeneous case (3).

4. Conclusion

The DW dynamics is studied in the two-layer ferromagnet with
different parameters of magnet anisotropy and exchange. The
dependences of the minimum DW velocities necessary for one to
another layer passage from the material parameters, namely, aniso-
tropy and exchange are obtained. Using the perturbation theory for
solitons the equation for the DW centre velocity is obtained. The
dependences of steady DW velocities from the material parameters
in crossing from one layer to another are determined.

It is shown that the received analytical results coincide with the
numerical ones for the case of small inhomogeneities in the material
parameters and DW velocities. The DW pinning on the boundary
between the layers is studied as well. The frequencies of DW inner
oscillations modes (translation and pulsation) are determined.
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