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INTRODUCTION

In recent years, the dynamics of solitons has attracted increasing interest [1], which is motivated by
their numerous physical applications [2–4]. For example, in solid state physics, sine�Gordon solitons
describe domain boundaries in magnets, dislocations in crystals, fluxons in Josephson junctions, etc.

Aimed at the construction of models describing actual physical processes, a task of interest is to study
the influence exerted by perturbations of various shapes on the dynamics and structure of sine�Gordon
solitons. For example, much research has been focused on the influence of a coordinate� and time�depen�
dent external force and a spatial modulation of the periodic potential (SMPP) (see, e.g., [2–9]). The
effect of small perturbations on sine�Gordon solutions can be examined with the help of well�developed
perturbation theory for solitons [3–6, 9–10], while the influence of large perturbations can generally be
investigated only by applying numerical methods (see [6, 11–14]).

Consider the following modified sine�Gordon equation, which appears, for example, in describing the
dynamics of domain boundaries in multilayered ferromagnets [15]:

. (1)

Here,  and  are functions characterizing the spatial modulation of the parameters, h is an
external force parameter, and α is a damping constant. In the case of arbitrarily varying K and A, Eq. (1)
can be solved only with the help of numerical methods.

When  and , Eq. (1) passes into the well�known sine�Gordon equation, which
has the kink solution

, (2)

where  and  is a continuous parameter ( ) determining the velocity of the kink.
The sine�Gordon equation also has spatially localized solutions, such as a breather at rest,
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where  is the frequency of the breather and  is the coordinate of its center, and a soliton solution of the
form

. (4)

The dynamics of sine�Gordon solitons in the case of , , and a steplike “point SMPP”
of the form , where  is the Dirac delta function and , was investigated in detail
by applying analytical and numerical methods (see [3–6, 16]). It was shown that, in the case of an “unde�
formable kink,” the SMPP acts as a potential. With a suitable sign of  , it acts on a kink as an
attracting potential, so sine�Gordon solitons can be localized and radiate. The possibility of exciting a
localized mode in kink scattering, which has a large effect on the kink dynamics, was also taken into
account. It was shown numerically and analytically in [17–19] that the resonance interaction of a kink
with an excited localized mode is possible in the case of an extended SMPP. The structure and properties
of localized nonlinear waves excited by one� and two�dimensional SMPPs were analyzed numerically in
[20, 21]. In the case of two identical SMPPs [22–24], it was shown that strong combined effects and four�
kink states can appear in the system. The transmission, capture, and reflection of a pair of kinks in the
presence of SMPP were also studied (see, for example, [25, 26]).

In the case of  and , perturbation theory and numerical methods were used to study the
dynamics of a kink in the presence of a steplike point SMPP with a Dirac delta function and an extended
SMPP of rectangular shape [15, 27, 28]. In this paper, the dynamics of a kink is investigated with allow�
ance for the possibility of exciting large�amplitude nonlinear localized waves by the SMPP region in the
presence of an external field and damping.

1. NUMERICAL SOLUTION METHOD

Consider a kink of form (2) moving at a constant velocity  through the SMPP region. The spatial
modulation of the parameters  and  in Eq. (1) is modeled using a Gaussian�type function:

, (5a)

, (5b)

where W is a parameter characterizing the SMPP width, x0 is the position of its center, ΔK = K – 1, K is
the parameter value at the point x0, ΔA = A – 1, and A is the parameter value at the point x0. The boundary
conditions are specified as

(6)

Exact solutions of Eq. (1) can be obtained only in special cases, and analytical methods (e.g., pertur�
bation theory) work, as a rule, only in bounded ranges of system parameters. Currently, a variety of numer�
ical methods are available for solving such equations. For example, a compact finite�difference scheme
and a DIRKN method are used in [29]. The compactness of the scheme lies in that its recurrence formula
for new time level computation consists of at most nine stencil points, including the central one, near
which the derivatives are approximated. By a DIRKN method, we mean the class of diagonal implicit
Runge–Kutta–Nyström methods (more detail about these methods can be found, e.g., in [30]). In [31]
the sine�Gordon equation is solved numerically using collocations and radial basis functions. The method
of lines is applied in [32]. The spectral and pseudospectral Fourier methods are used to solve sine�Gor�
don�type equations in [26, 33–35]. A meshless scheme relying on multiquadratic quasi�interpolation is
presented in [36]. This method does not require solving large�scale systems of linear algebraic equations.
Various predictor–corrector schemes are used in [37, 38]. A method based on reproducing kernels in Hil�
bert spaces is applied in [39].

In this paper, Eq. (1) is solved numerically using finite differences [40–42]. There are numerous ver�
sions of this method, which can be formally divided into explicit and implicit ones. We use a three�level
explicit scheme with derivatives approximated on a five�point cross�type stencil, which was used earlier
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for simpler sine�Gordon equations (see, e.g., [22, 23]). Approximating the original differential equation
on this stencil yields the finite�difference equation

(7)

Here, Δx is the spatial mesh size and τ is the time step. This numerical scheme is second�order accurate
with respect to Δx and τ and conditionally stable: (τ/Δx) ≤ 1/2.

In the case under study, the scheme consists of a single step, involves relatively few memory calls, and
admits further optimization. Another convenience is that the scheme can be adapted with minor modifi�
cations to other versions of the one�dimensional equation (1) and to multidimensional sine�Gordon
equations.

Boundary conditions (6) imply that particular values are specified on the grid boundaries. Numerical
simulation based on iterative scheme (7) shows that waves reflect from the grid boundaries, thereby dis�
torting the results when the simulation is long. Two approaches are usually used in such cases (see, e.g.,
[43, 44]). One of them makes use of an extended grid in coordinate and a process is studied in its central
part until a certain critical time such that emitted waves have no time to reflect from the grid boundaries
and return to the center. The idea of the other approach is that waves are absorbed near the domain bound�
ary, which is preferable in terms of computational resources. Numerous types of absorbing conditions have
been developed to date [45–48], including ones for second�order wave equations [49]. As a rule, the
behavior of waves near the boundaries is described by special equations (for example, to implement Som�
merfeld radiation conditions [45]). However, for Eq. (1), there is a simpler method. Specifically, the dis�
sipative parameter  is defined as a piecewise constant function

(8)

where Ddiss is the width of the absorption domain (as a rule, 3–5% of the width of the entire domain to be
simulated) and α0 is the value of the dissipative parameter in the main domain. As a result of using (8), all
waves approaching the grid boundaries are nearly completely damped.

To estimate the error of the method, the values of  for fixed  and various  as computed from
Eq. (1) are compared with its exact solution (2) (at  and h = α = 0). The absolute error can
be calculated using the formula

, (9)

and the normalized error is given by

, (10)

where the normalizing value  is set equal to the upper limit of measurements; in our case, . The
numerical simulation has shown that errors are accumulated over time, but the error growth rate is rather
slow. Even for the large parameter value t = 500, the error is .

2. INTERACTION OF A KINK WITH AN IMPURITY

First, we consider a kink that keeps moving without damping. As is known, SMPP can create a poten�
tial well or a potential barrier for the moving kink, and its energy is reduced or increased because of the
interaction with the impurity. Figure 1 presents the numerically computed minimum velocity vmin(ΔA, ΔK) at
which the kink passes through the SMPP region. The results show that the effect of ΔK on υmin is notice�
ably larger than that of ΔA (see curves (1)–(4) in Fig. 1b). The curves in Fig. 1b for Δ > 0 and Δ < 0, where
Δ = ΔA + ΔK, are not symmetric. This can be explained by the fact that the velocity of the kink and, hence,
its kinetic energy, increase when it overcomes the potential well at the initial time. Thus, the kink escapes
the SMPP region at a higher velocity than the initial one, thus reducing vmin. In the case of a potential
barrier, on the contrary, as the kink approaches the SMPP region, its velocity first decreases, thus increas�
ing vmin. For ΔA + ΔK < 0, in contrast to the analytical case, when the kink velocity is lower than vmin, the
kink is localized on the potential well (Fig. 2). The kink structure varies with time. In addition to exciting
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a translation mode associated with oscillations of the kink’s center of mass, we observe a fluctuation mode
associated with variations in the kink width.

To verify the performance of the numerical scheme, we consider the analytical solution of the per�
turbed sine�Gordon equation (1) with the use of solution (2) with a time�dependent velocity :

, (11)
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Fig. 1. Minimum kink velocity vmin as a function of (a) ΔA for ΔK = 0, W = 1, h = 0, and α = 0 (circles show the solution
of system (14), (15), while the solid curve depicts the numerical solution of Eq. (1)) and as a function of (b) Δ = ΔK + ΔA
for (1) ΔA = 0, W = 4; (2) ΔK = 0, W = 4; (3) ΔA = 0, W = 1; and (4) ΔK = 0, W = 1.
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Consider a kink moving at a sufficiently low velocity. Then the use of solution (12) is traditional and jus�
tified.

Perturbation theory (in the adiabatic approximation) [50] yields the following system of equations for
 and :

(13)

(14)

where . System (13), (14) describes the time variations in X(t) and u(t). It is solved numerically
by applying the fourth�order Runge–Kutta method with a step size of 0.01. Figure 1a shows that, for small
SMPPs, the solution of system (13), (14) agrees well with the numerical solution of Eq. (1).

Inspection of the dynamics of a kink intersecting the SMPP region reveals that localized large�ampli�
tude nonlinear waves of the soliton and breather types appear in this region. The numerical results show
that the emergence and evolution of such waves follow various scenarios depending on K, A, and W.
Although the time required for the kink to travel through the SMPP region is small (about ten time units),
the process is accompanied by noticeable variations in the velocity and structure of the kink. All the results
presented below were obtained for  and h = 0.016. The choice of h = 0.016 is explained by the
necessity to speed up the kink to the steady�state velocity required for intersecting the SMPP region with
specified parameters K, A, and W.

Figure 3a displays a typical pattern of kink dynamics. After the kink goes away, a nonlinear wave
appears in the SMPP region. Its amplitude is maximal at the center of the SMPP region and oscillates
from  to . Note that the amplitude value depends strongly on the parameter K, A, and W. For
the case presented in Fig. 3, Figure 4 (curve 1) depicts  at the center of the SMPP region as a function
of time. It can be seen that this is a periodic function with the oscillation frequency . The numer�
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Fig. 3. Emergence and evolution of (a) a breather at rest for , , and ; and (b) a soliton for ,
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ically obtained function  coincides with formula (3) assuming that the amplitude is damped with time
according to the formula

, (15)

where  and . As a result, the localized nonlinear wave obtained in this case can be regarded
as a breather at rest. Additionally, Fig. 3 shows that the breather is also damped due to radiated three�
dimensional waves. The logarithmic decrement obtained from the approximation of the time dependence
of  is nearly equal to the prescribed value ; i.e., much of the breather energy dissipates through radiation.

When the parameters (1 – A), (1 – K), and W increase to a certain value, the evolution of the develop�
ing breather at rest changes. Curve (2) in Fig. 4 shows that, starting at t = 160, the oscillations of  con�
tinue only in the domain of positive . Note that the breather transforms into a soliton having a much
higher oscillation frequency.

As (1 – A), (1 – K), and W increase further, an oscillating soliton appears in the SMPP region imme�
diately after the kink has gone (Fig. 3b, curve 3 in Fig. 4). Whereas the breather amplitude vanishes with
time, the soliton amplitude tends to a constant value . The numerically obtained dependence of  on
A, K, and W for SMPP of form (5) can be approximated by the formula

, (16)

where n = 0.13 and m = 0.93. Like the oscillation frequencies of the translational and fluctuation modes
of the kink, the oscillation frequency  of the soliton tends to unity with increasing (1 – K) and W for all
considered values of A. Additionally,  decreases for A > 1 and increases for A < 1.

The ranges of А and К were determined for which breathers and solitons exist. Qualitatively, the depen�
dence has the same form as in the case A = 1 (see [20]). As A increases, the curves shift toward larger values
of  and W.

Now, we consider the case of a nonzero external force and damping. Note also that in this case we
obtain a double sine�Gordon equation, which has its own kink solution. The scheme for the numerical
experiment is as follows: initially, a double sine�Gordon kink is specified at the center of an impurity that
stabilizes its position. After the kink is numerically restructured due to the impurity, an external constant
force is applied to it. As a result, the kink begins to move and escapes the SMPP region, while we observe
the variations in the structure of nonlinear waves in this region.

Various SMPP parameters (5) and  were used in the numerical computations. The value h = 0.35
was chosen so that, for smaller h, the external force was not sufficient for the kink to escape from the
SMPP region, since it did not have enough energy to leave the potential well.

Examining the dynamics of the kink escaping the SMPP region, by analogy with the above case of non�
dissipative inertial motion, we found that a breather, a breather transforming into a soliton, and a soliton
appear in this domain. The frequencies and oscillation amplitudes of breather� or soliton�type localized
magnetic inhomogeneities were determined as follows: we found the point at which dθ/dx = 0, and
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obtained the node index  corresponding to this point. Under the conditions  and , we

fixed the time t1 = tk corresponding to the maximum value θ(x, t) = . Next, under the conditions

 and , we fixed the time t2 = tk corresponding to the maximum value θ(x, t) = . The
difference t2 – t1 was equal to half an oscillation period. The period and the cyclic frequency were deter�

mined using the formulas T = 2(t2 – t1) and , while the oscillation amplitude was .
The dependences of the oscillation amplitude and frequency on , , and  were found to be similar to
the above case h = 0.

Figure 5 shows the oscillation frequencies of the (a) soliton and (b) breather as functions of  for two
different external forces, namely, (1) h = 0.016 and (2) h = 0.35. For the breather (Fig. 5a), the curves are
nearly parallel to each other with the higher one corresponding to the larger value of h. The difference
between the frequencies for different h is at least 15%. In Fig. 5b (the soliton case), the curves intersect,
which suggests that the external force has a large effect in this case and indicates the form of the depen�
dence. The curve for h = 0.35 is higher only when  is greater than two. Note also that, as h increases,
the soliton appears for larger , , and . Figures 6 and 7 suggest that the dynamical parameters of local�
ized nonlinear waves can be effectively controlled by varying the external force. For example, the breather
oscillation frequency  vs. h (Fig. 6b) is close to a linear function, while, the soliton oscillation fre�

quency is , where a and b are constants and ,  is the soliton oscilla�

tion frequency at h = 0 (Fig. 7b). The dependence of the breather oscillation amplitude  on h (Fig. 6a)
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is similar to the frequency dependence and is close to a linear function. The dependence of the soliton
oscillation amplitude on h is also similar to the frequency dependence (see Fig. 7a).

CONCLUSIONS

The dynamics of sine�Gordon kinks was studied in the presence of an external force, damping, and a
spatially modulated periodic potential. The minimum velocity required for a kink to pass through the spa�
tial modulation region was calculated. The cases in which the numerical results agree well with the ana�
lytical ones were indicated. The emergence, structure, and characteristics of large�amplitude localized
nonlinear waves of the soliton and breather types were investigated by applying numerical methods. The
influence of an external force on excited localized nonlinear waves was examined. The dependences of the
oscillation frequencies and amplitudes on the parameters of the system were found.
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