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1. INTRODUCTION

The sine�Gordon equation (SGE), whose solutions have the form of nonlinear solitary waves (soli�
tons), is extensively used in various fields of science, for example, for describing wave processes in rocks,
DNA dynamics in molecular biology, the dynamics of domain walls in magnets, dislocations in crystals,
and fluxons in Josephson junctions [1–6]. In many cases, the behavior of solitons can be described within
the framework of the point particle model; then their temporal evolution is governed by ordinary differ�
ential equations [7]. If perturbations are taken into account, the structure of solitons changes greatly and
the solitons themselves have to be described as deformable particles [3]. Moreover, a characteristic feature
of solitons is the excitation of internal degrees of freedom, which can play a determining role in some
physical processes. The internal modes include translational and fluctuation ones, the latter associated
with long�lived oscillations of the soliton width [8].

An issue of much interest is the influence exerted by perturbations of various shapes on the excitation
of internal soliton modes of the SGE. The effect of small perturbations on SGE solutions can be studied
using the well�developed perturbation theory for solitons [3, 7, 9, 10], while the effect of large perturba�
tions can generally be investigated only with the help of numerical methods [11–14]. Since the SGE
describes many phenomena in various areas of physics and engineering, a natural problem is to solve this
equation in the presence of local inhomogeneities (see, e.g., [3]). For example, numerous works have
studied the influence of a coordinate� and time�dependent external force described by a deltalike, step�
like, hyperbolic, or harmonic function [15–18].

Another interesting case is a spatial modulation (inhomogeneity) of the periodic potential, or the pres�
ence of an impurity in the system [3, 7]. The interaction of SGE kinks with impurities in the one�dimen�
sional case has long been discussed in the literature [3, 9, 11, 19]. For example, the classical particle model
for the kink–impurity interaction is applicable in the case when the impurity does not admit the existence
of an impurity mode, i.e., a localized oscillatory state on the impurity. The importance of impurity modes
in kink–impurity interactions was shown in [14, 17, 20–25]. In recent years, the kink–impurity interac�
tion has been investigated in the two�dimensional case [26–28]. Much attention has been given to multi�
soliton solutions of the SGE [21, 29].

Consider the modified SGE (see [3, 7, 9])
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where K(x) is a function characterizing the spatial modulation of the periodic potential (or “impurity”).
This problem is of interest in many physical applications, for example, for moving domain walls in ferro�
magnets with defects, where K(x) can change its sign [4].

In the case K(x) = 1, Eq. (1) becomes the well�known SGE and has a solution in the form of a topo�
logical soliton (or kink)

(2)

where Δ(ϑ0) = 1/  and ϑ0 is a continuous parameter (0 < ϑ0 < 1) determining the velocity of the
kink. Equation (1) also has a spatially localized solution, namely, a quiescent breather

where ω is the breather frequency and x0 is the coordinate of its center.

By applying analytical and numerical methods, the dynamics of SGE solitons have been studied in
detail in the case of a “point impurity,” i.e., K(x) = 1 – εδ(x), where δ(x) is the Dirac delta function and
0 < ε < 1 (see [3, 7]). It was shown that, in the undeformable kink approximation, the impurity is equiva�
lent to an effective potential. For example, for ε > 0, the impurity acts on a kink as an attracting potential;
moreover, SGE kinks can be localized on the impurity and radiate [3]. In the case of a deformable kink,
in addition to the oscillatory motion of the kink in the potential generated by the impurity, kink deforma�
tions of resonance nature (for example, a great change in the kink shape) occur [3]. The possibility of
exciting an impurity mode as a result of kink scattering was also taken into account, which leads to a con�
siderable change in the kink dynamics [14, 17, 21]. Note an interesting effect such as the reflection of a
kink by an attracting impurity due to the resonance energy exchange between the translational mode of
the kink and the impurity mode. The case of several delta�shaped point impurities, which are of interest
in some physical applications [30, 31], and even the case of a spatially modulated harmonic potential [32]
were considered. Analytical and numerical methods [9, 11, 33, 34] were used to investigate the dynamics
of SGE kinks for steplike K(x). In the case of a spatially extended impurity, for example, of the form

(3)

where W is the width of the domain where the periodic potential is spatially modulated, the kink–impurity
interaction was studied in both undeformable and deformable kink models [19, 22, 35]. The time depen�
dences of the velocity and structure of a kink, soliton, and breather were found, and the minimum velocity
required for a kink to escape from a potential well was determined.

Numerical methods were used in [22] to take into account the influence exerted on the dynamics of
kinks by the nonlinear wave excited on the impurity. Specifically, as for a point impurity, the possibility of
the resonance interaction between the kink and the excited impurity mode was shown numerically and
analytically in [22]; moreover, the problem was solved without exactly analyzing the change in the kink
structure caused by its interaction with the impurity. The structure and properties of localized nonlinear
waves excited on an impurity were analyzed numerically in [23]. The case of an isotopic impurity [14] and
a nontrivial metric of time [20, 36] were considered within the framework of the sine�Gordon model.

In the case of two identical impurities [37, 38], strong collective effects in the system were revealed,
which can be used in kink pinning by the impurity to excite multisolitons of the SGE, for example, tritons
and wobblers [38]. Additionally, it was shown that there can occur another interesting effect, namely,
quasi�tunneling, in which case a kink passing through a double impurity needs less kinetic energy than
that for passing a single impurity of the same sizes. However, the excitation, structure, and characteristics
of SGE multisolitons in the case of several extended impurities have not been completely investigated.
This paper deals with the dynamics of kinks of the one�dimensional sine�Gordon model with two identi�
cal spatially extended impurities of form (3) with the possibility of exciting localized large�amplitude non�
linear waves of the multisoliton type.
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2. NUMERICAL RESULTS

The spatial modulation of a periodic potential is modeled as (see [38])

(4)

i.e., in the form of two identical impurities separated by a distance d. Obviously, for a moving kink, an
impurity is a potential well for ΔK > 0 and a potential barrier for ΔK < 0.

For the considered large values of ΔK, in the general case, we have to use numerical methods. Equation (1)
is solved numerically by applying an explicit five�point finite�difference method [23, 37–39], which pro�
duces a grid function Uh whose values are approximately equal to the exact solution U = 2θ at grid points.
In the framework of this method, the solution of Eq. (1) is reduced to computing the sought function at
given grid nodes with the help of the recurrences

(5)

where

(6)

Here, Δx is the spatial mesh size and Δt is the time step. Introducing the function K*(x), we can compute
it prior to the simulation, thus eliminating one multiplication operation at every step. Numerical scheme (5),
(6) is stable if (Δt/Δx)2 < 1. This method was one of the first used to solve the SGE numerically [40]. A kink
of form (2) moving at the constant velocity ϑ0 was specified as an initial condition, and the boundary con�
ditions were θ(–∞, t) = 0, θ(+∞, t) = π, and θ'(±∞, t) = 0.

The typical implementations of the numerical solution to Eq. (1) used in [23, 28, 35] make it possible
to calculate the structure and dynamics of kinks with accuracy sufficient for observing the pinning of a
kink by an impurity, its passage through an impurity, and the structure and properties of excited nonlinear
waves. However, higher numerical accuracy is required for the study of possible resonance effects. For this
reason, the function θ(x, t) was approximated using Nx = 104 points.

In connection with the increased requirements on the accuracy of the computations, we needed a pro�
cedure for monitoring the error of the results. The error accumulated in the course of the numerical exper�
iment was estimated using the exact solution of Eq. (1) in the case K(x) = 1, i.e., kink (2) moving at a con�
stant velocity. The numerical and analytical solutions are compared in Fig. 1. The error presented was
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Fig. 1. Maximum normalized error ε accumulated by the numerical scheme in the course of a numerical experiment of
typical duration as a function of time t for Nx = (1) 105, (2) 104, and (3) 103.
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computed as follows: the maximum deviation of the numerical solution from the analytical one at a given
time was normalized by the characteristic quantity π:

where θ(x, t) is the numerical solution of Eq. (1) and θ*(x, t) is analytical solution (2). It can be seen that
even a slight improvement in the numerical accuracy requires that the number of approximation points be
increased by an order of magnitude. Based on these results, Nx = 104 was found optimal and was used in
the computations. Note that the largest influence one the accuracy of the computed dynamic character�
istics of the simulated system (for example, on the frequency of the kink or breather center) was exerted
not by the absolute value of the global error but rather by the amplitude of its “oscillation” (curves 1 and 2
in Fig. 1 are the most smooth).

Scheme (5), (6) was numerically implemented in Delphi [39]. Additionally, the algorithm was opti�
mized to reduce the CPU time. Specifically, by using the specific properties of the problem and reducing
the numerical accuracy and the range of the argument, the computation of the sine function was acceler�
ated by more than eight times with the help of the polynomial approximation

(7)

where

A3 = –2.66592780638819, A9 = 0.16264977471553,

A5 = 2.12775693434532, A11 = –0.01573479830529.

With the use of approximate formula (7), the sine on the interval [–2, 8] can be computed to 10–4 accuracy.
The condition for finding the argument of the sine in this interval is ensured by monitoring the residual
and the total energy of the system.

To optimize memory access operations, we used the built�in assembler of the Delphi compiler. As a
result, rejecting the high�level programming language, we overcame many of its restrictions and produced
a much more optimal code than that generated by the compiler. Tests showed that the overall acceleration
of the computations due to the optimization performed was roughly five times as compared with the con�
ventional implementation.

In the numerical experiments, a kink passed through impurities and its structure and basic dynamical
characteristics were computed at each time. The possible variants of kink dynamics were as follows: the
kink was pinned by the first or second impurity, the kink oscillated between them for a long time, and the
kink was reflected in the opposite direction [38, 41]. In what follows, the case of the kink passing through
both impurities is examined in more detail. In this case, the impurities give rise to oscillating localized
large�amplitude nonlinear waves of the breather type (see Fig. 2c [23]), which have a large effect on the
scattering of the kink. They are coupled four�kink multisoliton states, which are referred to hereafter as
quadrons. A quadron can be treated as a multisoliton consisting of coupled two�kink breather states local�
ized in each of these impurities. These states are referred to as impurity modes. Note that impurity modes
are accompanied by radiating small�amplitude waves.

The numerical results for the general case showed that the character of the arising state of the system
can be affected by varying two parameters: the initial kink velocity ϑ0 and the distance d between the impu�
rities. In�phase and antiphase oscillations, beats, and two interacting waves merging into one are observed
in Fig. 2. The type of coupling between the excited localized nonlinear waves varies with d. Since impurity
modes are excited not simultaneously but rather at time intervals Δt0, we can assume that ϑ0 also influences
the initial phase difference of their oscillations.

It should be noted that, because of the interaction between the impurity modes, the oscillation ampli�
tude is a function of time (periodic exchange of oscillation energy between the impurity modes, see
Fig. 2). The case of beats (see Fig. 2c) is the most typical oscillation regime, while in�phase (Fig. 2d) and
antiphase (Fig. 2b) oscillations are observed only in special cases. (In these cases, the frequency and
amplitude of the breather are nearly independent of time and determined basically by ΔK and W, and the
amplitude additionally depends on the initial kink velocity [23, 28].) Thus, the behavior of the system in
the case of coupled impurity modes can be widely different from that occurring in the case of a single
impurity.
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2.1. The Case of Widely Spaced Impurities

Consider in more detail the case where the excited impurity modes are separated by a long distance (for
example, ΔK = 1.2 and d > 4). Let us find the time dependence of R(t) = |max(A) – min(A)|, where A =
A(θ(x*, t)) is the instantaneous amplitude of an impurity mode (see Fig. 3). This quantity is convenient
for measurement and automatic software analysis [39]. In fact, the energy “transfer” between the impurity
modes is higher for larger values of R, but this is true only under the assumption that their frequency does
not change greatly and the variation in the oscillation energy of each impurity mode is determined prima�
rily by variations in its amplitude. Figure 4 shows R as a function of the initial kink velocity ϑ0 for d = 4
and d = 5.

Let us examine in more detail the behavior of the system with ΔK = 1.2 and d = 5 at three “singular”
points ϑ0 = 0.536, 0.64, 0.782, which correspond to the extrema in curve 2 in Fig. 4a. The first and third
points (ϑ0 = 0.536, 0.782) correspond to the minimum variation in the amplitude of the impurity modes,
while the second point (ϑ0 = 0.64), to the maximum variation in this amplitude. Antiphase oscillations are
observed at the first point, ϑ0 = 0.536 (see Fig. 5a). The amplitude (and the frequency ωim = 0.8663) are
nearly independent of time. At the second point, ϑ0 = 0.64 (see Fig. 5b), the oscillation energy is trans�
ferred nearly completely from one impurity mode to the other (and back) over time. The arising oscillation
regime is similar to beats exhibited by harmonic oscillators [42]. At the third point, ϑ0 = 0.782 (see Fig. 5c), as
in the first case, the amplitude is nearly constant (ωim = 0.8376) but the oscillations are in phase.
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Fig. 2. Excitation and evolution of localized impurity modes on impurity (4) caused by a kink (with the initial velocity ϑ0)
passing through this impurity at ΔK = 1.2 and W = 1 for (a) d = 0.75, ϑ0 = 0.6; (b) d = 5, ϑ0 = 0.536; (c) d = 5, ϑ0 = 0.64;
and (d) d = 5, ϑ0 = 0.782.
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The Fourier spectral analysis of the impurity modes revealed two frequency components that are most
pronounced in the beat regime (Fig. 5b) and are independent of ϑ0 (i.e., of the initial phase difference
between the impurity modes). Note that the Fourier spectrum contains only the first (lower) frequency
component in the case of in�phase oscillations (Fig. 5c) and only the second (higher) frequency compo�
nent in the case of antiphase oscillations (Fig. 5a). Thus, the quadron oscillations can be treated as the
superposition of oscillations at two frequencies. Moreover, we can assume that these frequencies are asso�
ciated with different states of the system: the lower frequency corresponds to in�phase oscillations, while
the higher frequency, to antiphase oscillations.

Note that, in the case of single impurity (3) (see [38]), a single frequency was revealed for each pair of
ΔK and W. For comparison purposes, Fig. 5 (curve 2) presents the frequency spectrum of a single impurity.
All the simulation parameters are the same. The only difference is that the double impurity is replaced by
a single one. It can be seen that the frequency of the single impurity mode lies between the frequency com�
ponents of the quadron.

Below, we determine the condition for exciting oscillation regimes with a certain phase difference:
(0, π/2, π). Let Δt0 denote the difference between the excitation times of impurity modes on the first and
second impurities. By the excitation time of an impurity mode, we mean the time when the kink intersects
the center of the corresponding impurity. Assume, for simplicity, that the initial phase difference between

the impurity modes is linearly proportional to Δt0. The ratio Δt0/  shows how many periods of the firstTim
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impurity mode pass until the second impurity mode is excited. Of course, this value is approximate, since
the first mode is assumed to oscillate at the constant averaged frequency  from the beginning of the
excitation. Then the in�phase oscillation condition (an integer number of periods of the first impurity
mode) and the antiphase oscillation condition (an odd number of half�periods of the same impurity
mode) can be written as

(8)

where n is an integer and  = 2π/ . Maximal beats are observed in the “middle” between these states.
Figure 6 shows Δt0 vs. the initial kink velocity ϑ0. For convenience, the points in these plots corresponding
to the “extrema” in Fig. 4 (i.e., to the oscillation regimes with a certain phase difference: 0, π/2, or π) are
given in the table together with the points computed using formulas (8).

It can be seen that, for d = 5, the points with phase differences 0, π/2, π agree well with formulas (8).
For d = 4, the agreement is somewhat worse, which can be explained by the stronger interaction and
energy transfer between the impurity modes.
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2.2. The Case of Closely Spaced Impurities

Now consider the case when excited impurity modes are separated by a short distance (for example,
ΔK = 1.2 and d < 4). More specifically, consider the cases d = 2 and d = 3. The general character of the
dependence of R on ϑ0 (see Fig. 4b) differs from the case of long distances between the impurities
(Fig. 4a). By analogy with the case examined earlier, the oscillation regimes of the curve d = 2 are analyzed
in more detail at three points: ϑ0 = 0.51, ϑ0 = 0.6, and ϑ0 = 0.78. At the first point, the amplitude of the
impurity modes undergoes maximum variations with time (see Fig. 7a). The amplitude of the impurity
modes at the third point nearly does not vary with time (Fig. 7c). The second point (Fig. 7b) is interme�
diate between these states. At the first point, ϑ0 = 0.51, the oscillation regime (Fig. 7a) is similar to previ�
ously considered ones where the energy of the impurity modes nearly completely passes from one to the
other due to amplitude variations. At the second point, ϑ0 = 0.6 (Fig. 7b), the oscillation energy is trans�
ferred in a similar manner with the only difference being that the amplitude does not decrease to zero.
At the third point, ϑ0 = 0.78, the amplitude of the impurity modes remains nearly constant and they oscil�
late in antiphase.

It should be noted that, for small d (in contrast to the above�considered case of large d), an arbitrary
initial phase difference between the impurity modes cannot be obtained by varying ϑ0. As a result, for
example, in�phase oscillations of the impurity modes sometimes fail to be excited in the considered cases.

As the parameter d decreases further, a situation is observed when, for any initial ϑ0, the phase differ�
ence between the impurity modes is reduced to zero and, after a certain time interval, they begin to oscil�
late in phase. Antisymmetric oscillations become unstable, and this oscillation regime fails to be excited.
This is explained by the fact that, as d  0, the binding energy considerably exceeds the oscillation
energy of the impurity modes, which makes them oscillate in phase [42].

As was noted above, both frequency components in the frequency spectrum of the quadron (except for
the special cases of in�phase and antiphase oscillations) are independent of ϑ0. A further study has shown
that similar behavior is exhibited for other values of d. In Fig. 8 curves 1 and 2 (triangle and squares,
respectively) depict both frequencies as functions of d. Note that curve 2 is bounded away from zero, since
only in�phase oscillations are stable for small d.
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3. ANALYTICAL RESULTS

3.1. Model of Coupled Identical Oscillators

It was shown in [3, 17, 25] that a single impurity mode can be described analytically by applying the
perturbation theory taking into account the excitation of a localized impurity mode in scattering a kink on
a point impurity. In the case of two point impurities, it was shown in [43] that a system of second�order
ordinary differential equations governing the oscillations of two identical harmonic oscillators with elastic
coupling can be obtained [42, 44]:

(9)

where ϕi = ϕi(t) is the deviation of the ith pendulum from equilibrium, F = F(ΔK, W, d) is a parameter
characterizing the degree of coupling between the effective oscillators, and Ω0 = Ω0(ΔK, W, d) is the eigen�
frequency of the effective oscillators.

To determine the dependences Ω0(d) and F(d) for three cases displayed in Fig. 8, we pass to the new
coordinates

(10)

Then system (9) can be rewritten as follows (see [42]):

(11)

Thus, the oscillations of the oscillators can be treated as the superposition of symmetric ΩS = Ω0 and

antisymmetric ΩA = (  + 2F)1/2 modes, which are known as the normal modes of the system, while vari�
ables (10) are called normal coordinates. In the special case of in�phase or antiphase oscillations, the sys�
tem as a whole and each oscillator separately oscillate at the corresponding normal frequency. Thus, the
frequency of the symmetric mode (Fig. 8, curve 1) corresponds to the eigenfrequency of effective oscilla�
tors (9). To determine it, the indicated curves are approximated by a simple exponential [43]:

where A, B, and C are approximation parameters. The approximation results are

Similarly, using the frequency of antisymmetric oscillations of the impurity modes (Fig. 8, curve 2) and

applying the relation F = (  – )/2, we can find

Curves 1 and 2 in Fig. 8 depict the frequencies of in�phase and antiphase oscillations, respectively,
obtained with the help of the Fourier analysis of the numerical solution to Eq. (1). Curve 3 was obtained
by analytically solving Eq. (15). Curve 4 was obtained from (18); it shows the frequency of the breather in
the case of a single impurity of double width for ω equal to (a) 0.8221, (b) 0.7825, and (c) 0.6382. Curve 5 was
obtained from (16); it depicts the frequency of the breather in the case of a single impurity of the same size
for ω equal to (a) 0.9342, (b) 0.9181, and (c) 0.8599.

Consider the case d = 5 and assume that the initial kinetic energy of the pendulums is zero: (0) = 0;
i.e., oscillations are excited only by an initial deviation. System (9) was numerically integrated from tmin = 0 to
tmax = 500. Figure 9 presents three cases for which the initial conditions ϕi(0) were the same as in Fig. 5.
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We can see that the results are in good qualitative and quantitative agreement, which is also supported by
the Fourier spectra.

Note also that, in the general case, the oscillations of the impurity modes are not harmonic, but their
difference from harmonic behavior becomes important only for large oscillation amplitudes. In that case,
for model (9), it is reasonable to consider other types of oscillators, for example, with sinusoidal nonlin�
earity. However, in the cases described in this paper (when impurity modes are excited by a kink scattered
on an impurity and their amplitudes do not usually exceed 0.6), allowance for a sinusoidal nonlinearity
does not lead to a noticeable difference, so the equations of harmonic oscillators work well.

3.2. Linearization of the Nonlinear Problem

It was shown in [38] that, in the case of a small single impurity, the linearization of the original problem
yields the Schrödinger equation, which provides good qualitative and quantitative agreement with the
numerical results.

Consider the location of the discrete impurity mode in the excitation spectrum of problem (1). Taking
into account that the considered one�dimensional equation (1) with K(x) = 1 additionally has vacuum
solutions, for example, θ

±
(x, t) = 0, we seek the spectrum of small excitations around them:

(12)ψ x t,( ) θ
±

x t,( ) δψ x t,( ), δψ x t,( )+ e
iω t–

,= =
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where |δψ(x, t)| � 1. Substituting (12) into (1) and linearizing the equation with respect to δψ, we obtain
the Schrödinger equation

(13)

Consider a spatial modulation of the periodic potential K(x) in the form of two identical rectangular
potential wells (4). The domain is divided into five zones. A solution is sought in the form of exponential
functions outside the impurities and in the form of trigonometric functions inside them:

(14)

The characteristic equation has the form

Assume that ω2 + ΔK – 1 > 0 and 1 – ω2 > 0. A dispersion relation is derived by equating the functions
and their derivatives with respect to the coordinate on the boundaries of the domains:

(15)

where l =  and k = .

The validity of the result is verified by considering the limiting cases d  0 and d  ∞. As d  ∞,
the right�hand side of (15) tends to zero and the expression passes into a dispersion relation obtained pre�
viously in the case of a single impurity (see [38]):

(16)

For d = 0, we have

(17)

The plus and minus signs in (17) correspond to two classes of solutions: even and odd, respectively.
Since, at d = 0, two impurities can be treated as a single effective one of width 2W, we need to compare (17)
with expression (16) for the case of a doubled�width impurity:

(18)

It can be shown that, in the limiting case of two merging impurities, the dispersion relation coincides
with that for the case of a single impurity of double width.

Note that solution (14) covers several interesting special cases. For example, in�phase or antiphase
oscillations of localized waves on impurities are possible. More specifically, in�phase oscillations are pos�
sible if A2 = A4 = 0 in (14), while antiphase oscillations are possible if A2 = B4 = 0. It is also possible that
two interacting waves merge in a single one. Using (15), we construct the dependence ω(d) for three dif�
ferent cases (see Fig. 8, curve 3). It can be seen that both limiting cases d  0 and d  ∞ hold. Curve 5 in
Fig. 8 depicts the frequency of the oscillation mode found analytically from (16) in the case of single impu�
rity (3) with the same parameters ΔK and W; it represents the asymptote for curve 3. Curve 4 was computed
from (18) in a similar manner.

Figure 8 shows that dispersion relation (15) (curve 3) is in good qualitative and quantitative agreement
with the numerically computed symmetric mode (curve 1). This is explained by the fact that expression (15)
involves the eigenfrequency of the impurity modes, which coincides with the frequency of the symmetric
mode (as follows from (11)).
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4. CONCLUSIONS

The structure and the properties of four�kink multisolitons (called quadrons) in the form of localized
coupled waves excited on impurities were studied. The cases of widely and closely spaced impurities were
considered. The frequencies of nonlinear large�amplitude waves localized on the impurities were studied
depending on the distance between the impurities. It was shown that the quadron oscillations are well
described by the model of two coupled identical oscillators. Specifically, in a similar manner to the case of
two coupled oscillators, two frequencies were observed in the oscillation spectrum. In the case of small�
amplitude oscillations, the spectrum of their possible oscillation modes was studied analytically and good
qualitative agreement with the numerical results was found.
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