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Excitation of Large-Amplitude Localized Nonlinear

Waves by the Interaction of Kinks of the

Sine-Gordon Equation with Attracting Impurity

A.M.Gumerov, E.G. Ekomasov, R.V.Kudryavtsev, M. I. Fakhretdinov

The generation and evolution of localized waves on an impurity in the scattering of a kink
of the sine-Gordon equation are studied. It is shown that the problem can be considered as
excitation of oscillations of a harmonic oscillator by a short external impulse. The external
impulse is modeled by the scattering of a kink on an impurity. The influence of the modes
of motion of a kink on the excitation energy of localized waves is numerically and analytically
studied. The method of collective coordinate for the analytical study is used. The value of this
energy is determined by the ratio of the impurity parameters and the initial kink velocity. It
is shown that the dependence of the energy (and amplitude) of the generated localized waves
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on the initial kink velocity has only one maximum. This behavior is observed for the cases of
point and extended impurities. Analytical expression for the amplitude of the localized wave in
the case of point impurity is obtained. This allows controlling the excitation energy of localized
waves using the initial kink velocity and impurity parameters. The study of the evolution
of localized impurities under the action of an external force and damping has shown a good
agreement with the nondissipative case. It is shown that small values of the external force
have no significant effect on the oscillations of localized waves. An analytical expression for the
logarithmic decrement of damping is obtained. This study may help to control the parameters
of the excited waves in real physical systems.

Keywords: sine-Gordon equation, impurity, kink, wave generation

1. Introduction

Soliton solutions of nonlinear differential equations attract increased attention of researchers
because of an increasing use in physical applications [1–18]. For example, solitons of the sine-
Gordon equation(the SGE) are frequently used. Only in solid state physics they describe domain
boundaries in magnets, dislocations in crystals, fluxons in Josephson junctions. The sine-Gordon
equation appears in the modeling of wave processes in rocks, molecular biology, models of field
theory and particle physics [2, 3]. Accounting for the influence of perturbations on the SGE so-
lutions leads to a change in the structure of solitons and to the excitation of the internal degrees
of freedom of solitons. It is important to study the SGE solutions considering the perturbations
arising in real physical applications. The effect of small perturbations on the SGE solutions
can be studied using a well-developed perturbation theory for solitons [5, 19, 20]. The effect of
perturbations can generally be investigated only with the help of numerical methods [20–23].
For example, the influence of a coordinate- and time-dependent external force has been stud-
ied [24–26].

Numerous works have studied spatially dependent perturbations in the sine-Gordon
model [5, 6, 18–43]. Many papers study the effect of spatial modulation of the periodic po-
tential (or the presence of impurities in the system) on the dynamics of the SGE solitons
[1, 2, 5, 6, 19, 28]. The SGE model with impurities describes, for example, a multilayer ferro-
magnet [40–43]. The importance of impurity modes in the kink dynamics was shown in [5, 28, 36].
The structure and properties of localized nonlinear waves excited on an impurity were analyzed
numerically in [21, 23, 32]. The case of several point impurities that are of interest in some
physical applications was considered in [44] and even the case of spatially modulated harmonic
potential was considered [31]. The possibility of exciting localized waves as a result of the kink-
impurity interaction has been also investigated in some cases [5, 6]. At first, a simple classical
particle model was used for the theoretical description of the kink-impurity interaction when
the excitation of an impurity mode was neglected, i.e., a localized oscillatory state on the im-
purity [5]. Accounting for the excitation of impurity modes in the kink-impurity interaction
leads to an interesting effect, i.e., the reflection of a kink by an attracting impurity due to the
resonance energy exchange between the translational mode of the kink and the impurity mode.
The work [22] has shown that this effect can be observed under certain conditions even in the
presence of damping that always occurs in real physical systems. The value of energy consumed
for the excitation of localized waves by the kink will determine the value of a new contribution
to the effective damping of a moving kink [45]. It may change depending on its initial velocity.
It is known that, in this case, the frequency of excited localized nonlinear waves is practically
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independent of the initial kink velocity. But this velocity must influence the amplitude of the
excited wave. In this paper, we study the problem of the possibility of controlling the structure,
dynamics, and energy of localized nonlinear waves excited by a moving kink on an impurity.

2. Basic equations and results

Consider a system determined by the Lagrangian

L =

+∞∫
−∞

{
1

2

(
∂u

∂t

)2

− 1

2

(
∂u

∂x

)2

− [1− εδ (x)] (1− cos u) + 4hcos
u

2

}
dx. (2.1)

The Rayleigh dissipation function has the form

R =

+∞∫
−∞

1

2
α

(
∂u

∂t

)2

dx. (2.2)

The equation of motion for the scalar field u (x, t) taking into account damping in the system
takes the following form:

∂2u

∂t2
− ∂2u

∂x2
+ [1− εδ(x)] sin u+ 2hsin

u

2
+ α

∂u

∂t
= 0. (2.3)

where δ (x) is the Dirac delta function, ε is the constant, h is a value of the external force,
α is a parameter of damping. Equation (2.3) is the modified sine-Gordon equation (MSGE).

In the case ε = α = h = 0 Eq. (2.3) has a solution in the form of a topological soliton
(or kink):

u(x, t) = 4 arctan
(
exp

[
Δ(υ0)

−1(x− υ0t)
])

, (2.4)

where Δ(υ) = (1 − υ2)1/2, υ0 is a continuous parameter (0 < υ0 < 1) determining the velocity
of a kink. There is also a solution (2.3) in the form of a spatially localized soliton, namely,
a quiescent breather:

ubreather(x, t) = 4 arctan

⎛⎝√
1− ω2

ω
· sinωt

cosh
[√

1− ω2(x− x0)
]
⎞⎠, (2.5)

where ω is the breather frequency and x0 is the coordinate of its center.
In the research [5] the case of a “point impurity” was studied in detail (εδ(x)) and it was

shown that for the corresponding sign of the constant ε it acts as an attracting potential on
a kink, therefore, soliton can be localized. In the case of a spatially extended impurity the
kink–impurity interaction was also studied in both undeformable and deformable kink mod-
els [41, 46, 47].

First, we consider the simplest case of point impurity. In this case, for ε, h, α � 1, using
the method of collective coordinate for the coordinate of the center X = X (t) and the amplitude
of localized wave a = a (t) the following system of equations has been obtained (see, e.g., [22]):{

8Ẍ (t) + U ′ (X)− εa (t)F ′ (X) = −8Ẋ (t)α+ 8h,

ä (t) + Ω2a (t)− ε2

2 F (X) = −ȧ (t)α,
(2.6)
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where

F (X) = 2
sinhX(t)

cosh2 X(t)
, U(X) = 8− 2ε

cosh2 X(t)
,

and the frequency of “impurity mode” is determined in the form

Ω2 = 1− ε2

4
. (2.7)

The system of equations (2.6) is a system of second-order ordinary differential equations.
It is much easier to study than the original equation (2.3). The first equation of (2.6) describes
the dynamics of the kink taking into account the presence of the impurity and localized wave
on it. The second equation of (2.6) describes the dynamics of a localized wave on an impurity
taking into account the interaction of the kink.

2.1. Nondissipative case

Consider the problem of the generation of the impurity mode of maximum possible ampli-
tude for the given parameters of the system. It is known that, when a kink is scattered by an
impurity, part of its energy is spent on the excitation of a nonlinear wave localized on an impu-
rity or a “breather” (if the kink passes through the impurity) [48, 49]. The value of this energy
can vary depending on the initial kink velocity υ0. Since the frequency of the excited wave is
practically independent of υ0 [50], υ0 should influence its amplitude. Consider the simplest case,
i.e., the case of a point impurity in the framework of the model (2.6) for h = α = 0. In Fig. 1
the result of the integration is given (2.6) with different modeling parameters, whence it is seen
that the breather oscillation amplitude can vary significantly. Suppose that in this model the
motion of a kink occurs according to the known law in the form

X1(t) = υ0t− 10. (2.8)

If we consider the influence of impurities and neglect the only excitation of localized wave by
analogy with solution (2.14), the law of motion of a kink can be represented as

X2(t) = arcsinh

[√
υ20 + ε/2

υ0
· sinh (υ0t− 10)

]
. (2.9)

(a) (b) (c)

Fig. 1. Time dependence of a(t) calculated by numerical integration (2.6) with initial conditions:
X(0) = −10, Ẋ(0) = 0.7, a(0) = 0, ȧ(0) = 0 and parameters (a) ε = 0.3, (b) ε = 0.5, (c) ε = 0.7.
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(a) (b)

(c) (d)

Fig. 2. X(t) = X1(t) (a) andX(t) = X2(t) (b) dependencies from expressions (2.8) and (2.9), respectively,
and dependencies F (t) at X(t) = X1(t) (c) and X(t) = X2(t) (d) constructed from the expression (2.11).
The parameters are ε = 0.7: 1) υ0 = 0.2, 2) υ0 = 0.5, 3) υ0 = 0.7.

Figures 2a, 2b presents the graph of dependence X(t) corresponding to (2.8)–(2.9) which shows
that these dependences are slightly different for large values of υ0 (see curves 3 in Figs. 2a, 2b).
However, in the region of small values of υ0 the dependence (2.9) shows a better qualitative
correspondence with the results of numerical simulation (see curves 1 in Figs. 2a, 2b).

Since the collective coordinate X(t) is described by the known law, the system (2.6) reduces
to one equation for a(t):

ä+Ω2a = F (t), (2.10)

where

F (t) = ε2
sinh (X(t))

cosh2 (X(t))
. (2.11)

Then this task can be considered as the excitation of a harmonic oscillator by an external
force F (t). Figures 2c, 2d present the dependence F (t) for some particular cases. In this case,
the initial conditions are assumed as follows:

X(0) = −10, Ẋ(0) = υ0, a(0) = 0, ȧ(0) = 0.

We use the Runge –Kutta method of numerical integration to study (2.8)–(2.11). The obtained
time evolution of a(t) is presented in Fig. 3, which shows that the oscillation amplitude a(t) differs

RUSSIAN JOURNAL OF NONLINEAR DYNAMICS, 2019, 15(1), 21–34



26 A.M.Gumerov, E.G. Ekomasov, R.V.Kudryavtsev, M. I. Fakhretdinov

(a) (b)

(c) (d)

(e) (f)

Fig. 3. Time dependence of a(t) calculated by numerical integration (2.10), for the law of motion of
a kink (2.8) (a), (c), (e) and (2.9) — (b), (d), (f) and parameters ε = 0.7: (a), (b) υ0 = 0.2,
(c), (d) υ0 = 0.5, (e), (f) υ0 = 0.7.

significantly in the case of small υ0 (Figs. 3a, 3b). We also calculate the maximum breather
oscillation amplitude Amax for cases (2.8) and (2.9) and compare it with the values obtained by
numerical integration of the original system (2.6). Figure 4 shows that for υ0 → 1 when the
energy of the excited breather is considerably less than the total energy of a kink, both laws
of motion of a kink (2.8) and (2.9) represent well the calculations of the original system (2.6).
However, for small υ0 when the laws of motion differ significantly (see Figs. 2a, 2b, curve 1), the
law of motion X(t) = X2(t) (2.9) gives considerably more accurate results. Therefore, it is used
in further calculations.

It is possible to find an analytical expression for the breather oscillation amplitude in the
case of a point defect using the law of conservation of energy. Then the localized oscillatory
mode is given as in [6]:

u(x, t) = B(t) exp(−ε|x|/2), (2.12)

where B(t) = a0 cos(Ωt + θ0), Ω is a frequency of the impurity mode (2.7), θ0 being an initial
phase. Then the energy stored by the breather can be calculated [5, 51]:

Eim =
1

2

+∞∫
−∞

{(
∂uim
∂t

)2

+

(
∂uim
∂x

)2

+ [1− εδ (x)]u2im

}
dx =

Ω2a20
ε

. (2.13)
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(a) (b) (c)

Fig. 4. Maximum breather oscillation amplitude Amax depending on the initial kink velocity υ0
at ε = 0.3 (a), ε = 0.5 (b) and ε = 0.7 (c), calculated by numerical integration: 1) Eqs. (2.10) for
the law of motion of a kink (2.8), 2) Eqs. (2.10) for the law of motion of a kink (2.9), 3) systems of
equations (2.6).

Suppose that the variation X(t) is described by the solution [6]:

X(t) = arcsinh (γ sinh(υ0t)), (2.14)

where γ =
√

1 + ε/(2υ20). Then the force acting on the breather (oscillator) is given by the
expression (taking into account (2.11)):

f(t) =
ε2Asinh (υ0t)

1 +A2sinh (υ0t)
. (2.15)

If the complex variable ξ(t) = ȧ + iΩt is used, then the equation of oscillations (2.10) can be
reduced to the form

ξ̇ − iΩξ(t) = f(t), (2.16)

which has the solution [51]:

ξ(t) = eiΩt

t∫
−∞

f(τ)e−iΩτdτ, (2.17)

with initial conditions a (−∞) = ȧ (−∞) = 0, i.e., the oscillator (breather) is absent before the
interaction. The total energy transferred from the particle (kink) to the oscillator (breather)
can be found as in [51]:

Eim = 2π2ε2sinh2
[

Ω

2υ0
arccos

(
2υ20 − ε

2υ20 + ε

)]
cosh−2

(
Ωπ

2υ0

)
. (2.18)

Then we obtain the following expression from (2.13) and (2.18) for the breather amplitude:

a20 =
2π2ε3

Ω2
sinh2

[
Ω

2υ0
arccos

(
2υ20 − ε

2υ20 + ε

)]
cosh−2

(
Ωπ

2υ0

)
. (2.19)

The expression (2.19) describes well the results obtained by numerical integration of the sys-
tem (2.6) (Fig. 5). However, the dependences obtained are very far from the breather amplitude
of the model (2.3). It was calculated by the numerical method described in [21]. Nevertheless,
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(a) (b) (c)

Fig. 5. Maximum breather oscillation amplitude Amax depending on the initial kink velocity υ0 at ε =
= 0.3 (a), ε = 0.5 (b) and ε = 0.7 (c), calculated: 1) by analytical expressions (2.19), 2) by numerical
integration of the system of equations (2.6), 3) numerical simulation of Eq. (2.3).

(a) (b)

Fig. 6. Maximum breather amplitude Amax in the center of the extended impurity depending on the
initial kink velocity υ0 at W = 1 (a) and W = 1.5 (b) in the framework of the model (2.20). Curves 1–6
correspond to the cases ΔK = 0.5, 0.75, 1, 1.25, 1.5, 1.75, respectively.

the nature of the dependences is qualitatively the same: one maximum is present in all the
curves in Fig. 5, which is presumably related to the ratio of the shape of the external force F (t)
and the shape of the potential U(X). Moreover, the maximum point depends on the parameters
of the impurity. Similar behavior is observed for the case of extended impurities of rectangular
form with a width W and a depth ΔK, (ΔK = 0 at x < 0, x > W ):

∂2u

∂t2
− ∂2u

∂x2
+ [1−ΔK] sinu+ 2hsin

u

2
+ α

∂u

∂t
= 0. (2.20)

Figure 6 shows the maximum amplitude of the generated breather obtained numerically from
Eq. (2.20). It is also shown that all curves have one maximum. The change in amplitude in this
case is more significant than in the case of a point impurity.

2.2. Interaction of a kink with an impurity mode taking into account
dissipation and external force

Consider the solution of the system of equations (2.6) in the presence of damping and
external force. Since parameter h is absent in the second equation of the system (2.6) (due to
the chosen approximation for the effective Lagrangian), the action of the external force does
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(a) (b) (c)

Fig. 7. Time evolution of the collective coordinate a(t) (curve 1) calculated from (2.6) and θ(x∗) (curve 2)
calculated from (2.3), for the case where the kink crosses by inertia the impurity with center at the point
x∗ = 0. The simulation parameters are υ0 = 0.7, α = 0.02: (a) ε = 0.3, (b) ε = 0.5, (c) ε = 0.7.

not affect the oscillations of the impurity mode within this analytical model. Therefore, in this
section, we restrict ourselves to the assumption that the kink moving by inertia passes through
the impurity region.

Figure 7 presents the result of the integration of the analytical model (2.6) (curves 1) and
the initial equation (2.3) (curves 2) for three different values of ε. It shows that the oscillation
amplitude decreases under the effect of damping and the curves 1 and 2 are qualitatively the
same. However, a quantitative comparison of their amplitude varies several times with increasing
parameter ε.

Analysis of the analytical model (in the absence of dissipation) has shown that the excitation
of an impurity mode as a result of the scattering of a kink on an impurity can be considered as
the excitation of an effective oscillator by a short-term impulse F (t). Figures 2c, 2d present an
example of an approximate view of the dependence F (t), where the graphs of this dependence
are given for particular cases of the laws of motion of a kink X(t). Thus, after the impurity
mode is excited F (t) → 0 further its oscillations occur under the influence of damping in the
absence of external influence. Then the second equation of the system (2.6) can be represented
(in our case) in the form

ä (t) + Ω2a (t) = −ȧ (t)α, (2.21)

which is a well-known equation of oscillations of a harmonic oscillator with damping [52], its
solution can be represented in the form

a(t) = B(t) cos(Ωt+ φ0), B(t) = B0 exp

(
−αt

2

)
, (2.22)

where φ0 is an initial phase and B(t) is an amplitude of the oscillations. Then the logarithmic

decrement of damping λ of the dependence a(t) taking into account the expression Ω2 = 1− ε2

4
can be found as follows:

λ =
απ

Ω
=

απ√
1− ε2/4

. (2.23)

The formulas (2.22)–(2.23) describe sufficiently accurately the dependence a(t) only from
a particular moment of time. Figure 8 shows that the oscillation amplitude of the depen-
dence a(t) (solid curves) coincides quantitatively with the analytical expression for B(t) (dashed
curves), starting from the third oscillation period, since the effect of a nonzero value of the
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(a) (b)

Fig. 8. Curve 1 is a time evolution of collective coordinate of a(t) from (2.6) for the case where the kink
crosses by inertia the impurity at υ0 = 0.7, α = 0.02: a) ε = 0.5, b) ε = 0.7. Curve 2 is a dependence
of B(t) calculated by the formula (2.22) at α = 0.02: (a) B0 = 0.38169, (b) B0 = 0.79306.

impulse F (t) is still manifested in the first two periods. Therefore, the initial part of the depen-
dence should be excluded from the analysis when calculating the decrement of damping directly
(for example, for the model (2.3)).

Next calculate the logarithmic decrement of damping λ of the oscillations of the impurity
mode within the framework of the initial equation (2.3). Figure 9 presents the dependence λ(ε),
calculated by integration of Eq. (2.3) (solid curve 1) and the analytical dependence, constructed
using the formula (2.23) (dashed curve 2). This figure shows that the curves obtained have
a good quantitative agreement. The error of the curve is due to the fact that the amplitude
of the excited impurity mode is extremely low at small values of ε (see Fig. 7). Therefore, the
relative error in calculating the amplitude of the impurity mode is significant.

Thus, the effect of damping on the impurity mode is almost identical to the model (2.3)
despite admitted approximation used in the construction of analytical models of (2.6). This
suggests that the dissipation of the system, which takes into account the waste of energy on
the excitation of the impurity mode, is one of the main damping channels (at least for the
point impurities under consideration). However, it is possible that the radiation emitted by
a localized wave can also play a significant role for large oscillation amplitudes of the impurity
modes. Similar assumptions are discussed, for example, in [50, 53].

Fig. 9. Logarithmic decrement of damp-
ing λ depending on ε when α = 0.02,
υ0 = 0.7. Curve 1 is calculated in the
integration of Eq. (2.3). Curve 2 is built
according to the formula (2.23).

Fig. 10. Dependence of the relative deviation of the oscillation
frequency of the impurity mode δω for a point impurity on the
parameter ε at α = 0.02. The deviation is calculated from the
exact value, which is determined by the formula (2.7). The
impurity mode is excited as the kink moves by inertia (curve 1)
under the action of an external force (curve 2) h = 0.0196039
(υ0 = 0.7).
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The significant difference in the amplitude of the excited impurity modes in both models
(Fig. 7) is due to the approximations allowed in the derivation of (2.3).

The effect of an external force can have a certain effect on the oscillations of the impurity
mode as it was shown in [54]. For example, the action of the field can lead to a change in the
oscillation frequency, however, this change may be insignificant in the case of a small external
force. Two graphs of the dependence of the relative error in the oscillation frequency of the
impurity mode for the cases of motion of the kink under the action of an external force (curve 1)
and by inertia (curve 2) are shown for comparison in Fig. 10. The occurrence of damping
did not affect considerably the deviation of the frequency of the impurity mode δω from the
nondissipative case (in both cases δω < 1%). Also, Fig. 10 shows that the relative deviation of
the frequency of the impurity mode from the nondissipative case does not exceed 2% for the case
of motion of the kink under the action of an external force h = 0.0196039. Thus, the presence
of a small external force has no significant effect on the oscillations of the impurity mode. The
approximation in the analytical model, when h is absent in the second equation of (2.6), is
justified.

3. Conclusion

It was shown that the scattering of a kink on an impurity can be considered as an effective
way to excite localized nonlinear waves. The dependence of the breather amplitude on the initial
kink velocity when there is only one maximum was calculated for both point and extended
impurities. This allows controlling the excitation energy of localized waves using the initial kink
velocity and impurity parameters. This behavior remains qualitatively the same in the presence
of a small external force and damping. The analytical expression for the decrement of damping
was calculated. It is shown that the considered small values of the external force do not have
a significant effect on the oscillations of localized waves. This opens up the possibility of using
this method of generation of localized impurities in real physical systems. A small external force
can be used to set the initial kink velocity.
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Arbitrarily Large Numbers of Kink Internal Modes in Inhomogeneous Sine-Gordon Equations, Phys.
Lett. A, 2017, vol. 381, no. 24, pp. 1995–1998.

[34] González, J.A. Jiménez, S., Belloŕın, A., Guerrero, L.E., and Vázquez, L., Internal Degrees of Free-
dom, Long-Range Interactions and Nonlocal Effects in Perturbed Klein –Gordon Equations, Phys. A,
2012, vol. 391, no. 3, pp. 515–527.

[35] Saadatmand, D., Dmitriev, S. V., Borisov, D. I., and Kevrekidis, P.G., Interaction of Sine-Gordon
Kinks and Breathers with a Parity-Time-Symmetric Defect, Phys. Rev. E, 2014, vol. 90, no. 5,
052902, 10 pp.

[36] Belova, T. I. and Kudryavtsev, A. E., Solitons and Their Interactions in Classical Field Theory,
Physics-Uspekhi, 1997, vol. 40, no. 4, pp. 359–386; see also: Uspekhi Fiz. Nauk, 1997, vol. 167, no. 4,
pp. 377–406.

[37] Popov, S. P., Influence of Dislocations on Kink Solutions of the Double Sine-Gordon Equation,
Comput. Math. Math. Phys., 2013, vol. 53, no. 12, pp. 1891–1899.

[38] Malomed, B.A., Dynamics of Quasi-One-Dimensional Kinks in the Two-Dimensional Sine-Gordon
Model, Phys. D, 1991, vol. 52, nos. 2–3, pp. 157–170.

[39] Saadatmand, D. and Javidan, K., Collective-Coordinate Analysis of Inhomogeneous Nonlinear
Klein –Gordon Field Theory, Braz. J. Phys., 2013, vol. 43, nos. 1–2, pp. 48–56.

[40] Ekomasov, E.G., Gumerov, A.M., Murtazin, R.R., Kudryavtsev, R.V., Ekomasov, A. E.,
and Abakumova, N.N., Resonant Dynamics of the Domain Walls in Multilayer Ferromagnetic Struc-
ture, Solid State Phenom., 2015, vol. 233–234, pp. 51–54.

[41] Ekomasov, E.G. and Shabalin, M.A., Simulation the Nonlinear Dynamics of Domain Walls in Weak
Ferromagnets, Phys. Metals Metallogr., 2006, vol. 101, Suppl. 1, pp. S48–S50.

[42] Ekomasov, E.G., Murtazin, R.R., Bogomazova, O.B., and Gumerov, A.M., One-Dimensional Dy-
namics of Domain Walls in Two-Layer Ferromagnet Structure with Different Parameters of Magnetic
Anisotropy and Exchange, J. Magn. Magn. Mater., 2013, vol. 339, pp. 133–137.

[43] Ekomasov, E.G., Murtazin, R.R., Bogomazova, O.B., and Nazarov, V.N., Excitation and Dynamics
of Domain Walls in Three-Layer Ferromagnetic Structure with Different Parameters of the Magnetic
Anisotropy and Exchange, Mater. Sci. Forum, 2016, vol. 845, pp. 195–198.

[44] Gulevich, D.R. and Kusmartsev, F. V., Perturbation Theory for Localized Solutions of the Sine-
Gordon Equation: Decay of a Breather and Pinning by a Microresistor, Phys. Rev. B, 2006, vol. 74,
no. 21, 214303, 5 pp.

[45] Gumerov, A.M., Ekomasov, E.G., Kudryavtsev, R.V., and Fakhretdinov, M. I., Localized Magnetic
Inhomogeneities Generation on Defects As a New Channel of Damping for a Moving Domain Wall,
Letters on Materials, 2018, vol. 8, no. 3, pp. 299–304 (Russian).

[46] Paul, D. I., Soliton Theory and the Dynamics of a Ferromagnetic Domain Wall, J. Phys. C, 1979,
vol. 12, no. 3, pp. 585–593.

[47] Piette, B. and Zakrzewski, W. J., Scattering of Sine-Gordon Kinks on Potential Wells, J. Phys. A,
2007, vol. 40, no. 22, pp. 5995–6010.

[48] Gumerov, A.M. and Ekomasov, E.G., Study of the Effect of Point Defects on the Nonlinear Dy-
namics of Magnetic Nonuniformities, Letters on Materials, 2013, vol. 3, no. 2, pp. 103–105 (Russian).

RUSSIAN JOURNAL OF NONLINEAR DYNAMICS, 2019, 15(1), 21–34



34 A.M.Gumerov, E.G. Ekomasov, R.V.Kudryavtsev, M. I. Fakhretdinov

[49] Ekomasov, E.G., Gumerov, A.M., and Kudryavtsev, R.V., Dynamics of Localized Magnetic In-
homogeneities in the Five-Layer Ferromagnetic Structure, Letters on Materials, 2016, vol. 6, no. 2,
pp. 138–140 (Russian).

[50] Ekomasov, E.G., Azamatov, S.A., and Murtazin, R.R., Studying the Nucleation and Evolution
of Magnetic Inhomogeneities of the Soliton and Breather Type in Magnetic Materials with Local
Inhomogeneities of Anisotropy, Phys. Metals Metallogr., 2008, vol. 105, no. 4, pp. 313–321; see also:
Fiz. Met. i Metalloved., 2008, vol. 105, no. 4, pp. 341–349.

[51] Zhang, F., Kivshar, Yu. S., and Vazquez, L., Resonant Kink-Impurity Interactions in the Sine-
Gordon Model, Phys. Rev. A, 1992, vol. 45, no. 8, pp. 6019–6030.

[52] Landa, P. S., Nonlinear Oscillations and Waves in Dynamical Systems, Math. Appl., vol. 360, Dor-
drecht: Springer, 2013.

[53] Goodman, R.H., Holmes, P. J., and Weinstein, M. I., Interaction of Sine-Gordon Kinks with Defects:
Phase Space Transport in a Two-Mode Model, Phys. D, 2002, vol. 161, no. 1, pp. 21–44.

[54] Ekomasov, E.G., Murtazin, R.R., and Nazarov, V.N., Excitation of Magnetic Inhomogeneities
in Three-Layer Ferromagnetic Structure with Different Parameters of the Magnetic Anisotropy
and Exchange, J. Magn. Magn. Mater., 2015, vol. 385, pp. 217–221.

RUSSIAN JOURNAL OF NONLINEAR DYNAMICS, 2019, 15(1), 21–34


