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The generation and evolution of multisoliton type magnetic inhomogeneities, which appear in two flat layers with the 
magnetic anisotropy that are different from those in three thick layers after pinning a 180° domain wall, have been investigated 
theoretically. The structure of the multisoliton type magnetic inhomogeneities have been constructed for the revealed magnetic 
inhomogeneities, and the ranges of the parameters determining the possibility of their existence have been found.
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1. Introduction

Different types of structural and chemical inhomogeneities 
involved in real magnets, as well as local (mechanical, 
thermal, or light) effects, give rise to local variations in 
magnetic parameters of the material. The existence of these 
inhomogeneities (or defects) in magnetic materials can lead 
to the appearance of spatially localized vibrational modes and 
the formation of different types of magnetic inhomogeneities, 
which affect the magnetization reversal of the sample [1]. 
Since it is usually difficult to perform the exact (microscopic) 
calculation, it is necessary to simulate the functions 
describing the parameters of the inhomogeneous material 
(for example, magnetic anisotropy constant, exchange 
interaction parameter, etc.). For ferromagnetic materials, it 
is common practice to use the approximation of the defect in 
the form of a planar (or plate like) magnetic inclusion, which 
is considered to be finite in thickness [2,3]. The influence of 
planar magnetic inclusions on the static and some dynamic 
properties of magnetic inhomogeneities was investigated 
using both the analytical and numerical methods [2—7]. 
It should be noted that multilayer magnetic structures are 
investigated using the models that take into account both 
the local and periodic spatial modulations of the magnetic 
parameters of the material (see, for example, [8,9]). 

At the same time, the inclusion of the spatial dependence 
of the material parameters in the analysis of the domain wall 
(DW) dynamics leads to a mathematically interesting problem 
of finding the solution to the modified sine-Gordon equation 
with variable coefficients, which is of great importance for 
many fields of the modern physics [10]. It is also known that, 
in these systems, apart from conventional linear excitations, 
namely, spin waves, there are nonlinear excitations, such as, 
for example, breathers [11]. The magnetic inhomogeneities 

generated on defects are frequently described as the 0° 
domain walls (or magnetic soliton) [3,12]. It should be noted 
that, in a defect-free magnet, magnetic inhomogeneities of 0° 
domain wall type are energetically unfavorable as compared 
to the homogeneous state of the magnetization vector. The 
presence of the defects that locally change the sign of the 
uniaxial anisotropy in the crystal can lead to the energetic 
favorability of 0° domain walls, as well as to their generation 
in the presence of excitations in the system [11]. In this work, 
we have considered the excitation conditions of localized 
high-amplitude nonlinear waves in the region of two planar 
magnetic inclusions.

2. Basic equations and results exciting  
multisolitons on impurities

Let us consider an infinite ferromagnet in which the crys-
tallographic axes (a, b, c) coincide with the Cartesian 
coordinate axes (x, y, z). By considering that the energy 
density of the magnet takes into account the exchange in-
teraction and anisotropy, the equation of motion for the 
magnetization in the angular variables m = m (0, sinθ, cosθ) 
can be represented in the dimensionless form [11]
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where m is the ferromagnetic vector, θ is the angle in the yz 
plane between the direction of the vector of the magnetic 
moment m and the easy magnetization axis (the Oz axis).  
K(x) is the function that determines the distribution of the 
inhomogeneity of the anisotropy constant. The coordinate x 
is normalized to δ0 (where δ0 is the width of the static Bloch 
domain wall), and the time t is normalized to δ0 / c (where 
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c is the Walker limiting velocity of the steady state motion 
[1]). In case K (x) =1 the Eq.(1) goes over into the known 
sine-Gordon equation and is solved as a topological soliton 
or kink:
	 θ (x,t) =2arctan (exp [Δ (υ0) (x-υ0t)]	       (2)

where 
2 1/2( ) = (1 )−∆ υ − υ , υ0 is an continuous parameter 

(0 < υ0<1) determining the DW velocity. Also, there exists a 
spat ial localized solution of Eq.(1) as a stationary breather:
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where ω is the breather oscillation frequency and x0 its centre 
coordinate.

There are multisoliton solutions of the sine-Gordon 
equation. For instance, in [13,14] an interesting three-
kink solution of a wobble type is described:
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x0 is «the centre» coordinate of the solution (however, 
contrary to the kink (2) this parameter does not coincide 
with the geometry kink centre), ω is a wobble oscillation 
frequency. It is worth noting that β, m, ε parameters admit to 
change the general form of the solution. Equation (1), which 
has been intensively studied recently, is a modified sine-
Gordon equation with variable coefficients.

The most interesting case is the one where the size 
of the domain wall and the size characterizing the 
inhomogeneity of the parameters (or impurities) are of the 
same magnitude order; then, the shape of the domain wall 
must undergo substantial changes when it passes through 
the inhomogeneous region. The spatial modulation of the 
periodic potential is to be modelled as [2]:
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i.e. as two identical impurities separated by a certain distance 
d. Obviously, at ΔK > 0, the impurity is a potential well for the 
moving kink whereas at ΔK < 0 it is a potential barrier.

The Eq.(1) was solved numerically using an explicit 
scheme. The equation discretization was carried out by the 
standard five-point scheme of the «cross» type with the 
stability condition (Δt / Δh)2≤ 0.5, where Δt is a time step 
and Δh is a coordinate step. Initially we have the DW (2) 
moving at a constant velocity υ0, with boundary conditions 
of θ(—∞,t)=0, θ(+∞,t)=π, θ’(±∞,t)=0. Common numerical 
realizations of the Eq.(1) used in [11,15] enable us to calculate 
the kink structure and dynamics accurately enough to 
watch the kink pinning and passing through the impurities, 

structure and properties of the non-linear waves excited. Yet 
much higher accuracy is required to study possible resonance 
effects. So Nx = 104 points were used for approximating the 
function θ(x,t). Special control of the result errors was carried 
out.

We examine the case of the DW pinning in one of the 
impurities. Note that the presence of two impurity areas 
enables us to find multisoliton solutions of the sine-Gordon 
equation. To be definite enough, we take W = 1, ΔK = 1.2, 
x1 = –7 and the distance d between the impurities may vary 
widely. In all cases hereinafter the initial DW velocity was 
selected so that the kink was pinned in the second impurity 
area. There are some difficulties in the numerical study of the 
task considered. As the interaction of the solitons excited may 
lead to oscillation mode appearance characterized by energy 
transfer from the DW to the magnetic breather and conversely 
(similar to the beat regime for harmonic oscillators), the 
oscillation frequency may change in the course of time. So 
further, we resort to isotropic oscillations and stationary 
frequencies that are set over time.

At the beginning we consider the case when the parameter 
d is high. As seen from Fig.1a at d = 10 the DW is pinned in 
the second impurity area and transmission ωtrans and pulsation 
ωpulse modes are excited whereas in the first impurity area the 
breather with ωbreather frequency is excited. The characteristic 
frequencies amount to ωtrans=0.429, ωpulse=0.875, ωbreather=0.92 
(Fig.2). If we compare the values of the excited pulsation and 
transmission kink modes and oscillation breather frequencies 
for a single impurity [11], we shall see that they practically 
coincide. Thus, the soliton interaction in the impurity area is 
not observed at high d parameters. The obtained multisoliton 
consisting of the weakly interacting DW and magnetic 
breather is somehow connected with the well-known three-
kink solution of non-linear differential triton equations.

Let us study the changes in the triton structure and 
properties at decreasing parameter d. As seen from Fig.1, 
we obtain a triton consisting of the non-interacting DW and 
magnetic breather at d = 5 and above. Starting with d = 4 
(Fig.1b), the triton structure and properties change greatly. 
The DW and magnetic breather are strongly bound, and 
inner oscillation kink modes (pulsation and transmission) 
become equal to the breather oscillation frequency (Fig.2). 
The obtained magnetic multisoliton can be considered as a 
special triton solution of the sine-Gordon equation of the 
wobble type (4) at β = 2, m = 1, ε = 1.

In the third, most narrow area the formation of a strongly 
bound DW and magnetic soliton state is possible at d ≈ 
1.4—1.6 (Fig.1c) which is a three-kink state with much lower 
oscillation frequency ωpulse≈ωtrans≈ωbreather≈0.46 (Fig.2). It 
corresponds to the results [11] forsoliton oscillation frequency. 
For the triton case periodic energy transfer between the 
magnetic soliton and the DW is quite typical. The case is that 
according to [11] the chosen parameters W and ΔK are to lead 
to the magnetic breather formation. Collectiveinteraction 
effects of the impurities at a short distance result in the fact 
that a magnetic soliton is excitedinstead of the magnetic 
breather. Further decrease of the distance between the defects 
d < 1.2 makes it impossible to analyze the triton structure by 
the used numerical method.
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Fig. 2. Dependence of the magnetic breather frequency ωbreather  
(curve 1), pulsation DW mode ωpulse (curve 2) and transmission DW 
modes  ωtrans (curve 3) from the parameter d at W = 1, ∆K = 1.2. 

Conclusion

Pinning of the DW and exciting high amplitude localized non-
linear waves on the impurity may be used for multisoliton 
excitation in the sine-Gordon equation. A triton consisting 
of the weakly bound DW and magnetic breather is observed 
at long distances between the impurities. Starting with a 
certain critical distance pulsation and transmission mode 
frequencies are synchronized with the magnetic breather 
oscillation frequency and a triton solution of a wobble type 
is observed. At very short impurity distances excitation of 
the strongly bound DW and magnetic soliton is possible. 
The dependence of the structure and excited magnetic 
multisoliton frequencies from the impurity distances is 
determined.
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Fig. 1. The magnetic multisoliton profile θ(x) in different 
moments of time:  (a) at W = 1, ∆K = 1; 2, d = 10 in t1 = 1308.41, 
t2 = 1309. 91, t3 = 1311.45;  (b) at W = 1, ∆K = 1; 2, d = 3 in  
t1 = 784.748, t2 = 786.249, t3 = 787.749;  (c) at W = 1, ∆K = 1.2, d = 
1.6 in t1 = 1549.99, t2 = 1551.49, t3 = 1554.49. Dashed lines denote 
centre areas of the 1st and 2nd impurities. 
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