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Abstract. The article presents the research results of localized magnetization waves dynamics 

in five-layer and three-layer ferromagnetic structures. Structures consisting of three or two 

wide identical magnetic layers separated by two or one thin magnetic layer with the magnetic 

parameters values changed relative to wide layers are considered. The magnetic anisotropy, 

exchange, and damping parameters are considered to be the functions of the coordinate 

perpendicular to the interfaces. Intermediate layers are assumed to be infinitely thin. The 

considered magnetic material has homogeneous magnetic parameters everywhere, except for 

the planes corresponding to the interlayers. Using the approximate collective-coordinate 

method, the dynamics of coupled nonlinear magnetization waves localized on thin layers is 

theoretically studied. 

1.  Introduction 

Multilayer magnetic structures [1] often represent periodically alternating layers of two materials with 

different physical properties. With regard to the possibility of their practical application, we study the 

dynamics of spin waves and magnetic inhomogeneities propagating in such systems both along and 

perpendicular to the interfaces of the layers. In the second case, one-dimensional models are often 

used [2, 3]. The study of one-dimensional models allows us to understand the effect of different 

magnetic parameters on the process under consideration [2–5]. There are two approaches when 

researching the dynamics of linear and nonlinear magnetization waves propagating perpendicular to 

the layers. In the first of them, to describe the magnetization dynamics in a layer, the Landau-Lifshitz 

equation with constant material parameters is considered, and certain boundary conditions are required 

at the interface of the layers [6]. In the second approach spatial modulation of the material magnetic 

parameters values is introduced [7, 8]. The influence of local and periodic one-dimensional spatial 

modulation of the material magnetic parameters on the propagation nature, spectrum and damping of 

spin waves, and on high-frequency properties has been studied quite well [2]. In such systems it is 

possible to generate localized magnetization waves (LMW) of the magnetic soliton and breather types 

in the magnetic defect region [7–10]. Special interest in magnetic solitons and breathers is currently 

associated with the appearance of new experimental techniques that allow to study formation and 
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propagation of localized magnetization waves of nanometer dimensions and such waves interaction 

with domain walls (DW) [11–16]. 

Under certain conditions, the solution of this problem leads to the solution of a sine-Gordon 

equation with variable coefficients. This equation is of interest for many areas of modern physics [17]. 

For simplicity, as a rule there was considered a spatial modulation of only some magnetic system 

parameters. The modulation of magnetic anisotropy was often taken into account for the case of a two, 

three-, and five-layer magnetic. These problems were studied both by analytical and numerical 

methods [7, 18]. This paper presents a theoretical study of the dynamics of localized magnetic 

inhomogeneities of multisoliton type in five-layer and three-layer ferromagnetic structures. The 

magnetic anisotropy, exchange, and damping parameters are considered to be the functions of the 

coordinate perpendicular to the interfaces. 

2.  Equations, results and discussion 

Let us consider a five-layer ferromagnetic structure. This structure consists of three wide identical 

magnetic layers separated by two thin magnetic layers with altered values of anisotropy, exchange, 

and damping parameters. These parameters are considered to be the functions of the coordinate x 

perpendicular to the interfaces. Intermediate layers are assumed to be infinitely thin. The considered 

magnetic material has homogeneous magnetic parameters everywhere, except for the planes 

corresponding to the interlayers. We will continue by studying the dynamics of localized 

magnetization waves located in the yz plane. Usually, when solving dynamic problems, it is 

convenient to go to the spherical coordinates of the magnetization vector M (sinφ, cosφsinθ, 

cosφcosθ). Here 0 ≤ θ ≤ 2π is the angle in the yz plane between the magnetic moment vector direction 

and the axis of easy magnetization (axis Oz), –π/2 < φ < π/2 is the angle describing the exit of M from 

the domain wall plane. Considering the exchange interaction, anisotropy and assuming φ << 1 in the 

magnetic energy density, the motion equation for the magnetization in the angular variables in the 

presence of two infinitely thin magnetic layers can be represented in the following dimensionless 

form: 

                             𝑢𝑡𝑡 − {[1 + 𝛾1𝛿(𝑥) + 𝛾2𝛿(𝑥 − 𝑑)]𝑢𝑥}𝑥 + [1 − 𝜀1𝛿(𝑥) − 𝜀2𝛿(𝑥 − 𝑑)] sin 𝑢
= −2ℎ sin(𝑢 2⁄ ) − 𝛼[1 + 𝛽1𝛿(𝑥) + 𝛽2𝛿(𝑥 − 𝑑)]𝑢𝑡 ,                                                      (1) 

where u = 2θ(x,t), δ(x) is the Dirac delta function, ε1 and ε2, γ1 and γ2 are the spatial modulation 

amplitudes of the anisotropy and exchange constants on the first and second thin layer, d is the 

distance between thin layers, h – normalized magnitude of the external magnetic field. Inhomogeneous 

dissipation is written as α[1 + β1δ(x) + β2δ(x – d)], where α – the dissipation coefficient in the thick 

layer, β1 and β2 take into account the change in dissipation in the thin layers. Equation (1) is a 

modified sine-Gordon equation. The equation of the form (1) can also be obtained for the case of two-

sublattice ferrimagnets and weak ferromagnets. 

Let us apply the approximate collective-coordinate method used earlier to analyze the oscillations 

of nonlinear LMW on identical infinitely thin magnetic layers [18]. We will take into account the 

LMW presence (or impurity modes) by introducing two collective variables a1 = a1(t) and a2 = a2(t), 

which are the amplitudes of these waves. We take the impurity modes in the form of [9, 18]: 

𝑢𝑎 = 𝑢1 + 𝑢2 = 𝑎1 exp(−𝜀1|𝑥| 2⁄ ) + 𝑎2 exp(−𝜀2|𝑥 − 𝑑| 2⁄ ).                              (2) 

The magnitude of the impurity mode should greatly decrease to the neighboring impurity. In the 

framework of the considered approximation ε1,2, |a1,2|, |h|, α << 1. Then the nonlinear term in 

Lagrangian, leading to equation (1), can be expanded into a Taylor series to second-order terms in ε. 

Substituting (2) into Lagrangian and Rayleigh dissipative function, corresponding to equation (1), after 

integration leads to a new effective Lagrangian and Rayleigh function, which are already functions of 

the new variables a1 and a2. The motion equations for a1 and a2 are obtained by substituting the 

effective Lagrangian and Rayleigh function into the Lagrange equations of the second type. They have 

the following form: 
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�̈�1 + 𝛼�̇�1 + 𝑎1𝜔1
2 + 𝑎2𝑘1 + 𝛼[�̇�1(𝛽11 − 𝛽12𝜀2𝐸) + �̇�2(𝛽12 − 𝛽22𝜀2𝐸)]𝜀1 = 0,               (3) 

�̈�2 + 𝛼�̇�2 + 𝑎2𝜔2
2 + 𝑎1𝑘2 + 𝛼[�̇�2(𝛽22 − 𝛽12𝜀1𝐸) + �̇�1(𝛽12 − 𝛽11𝜀1𝐸)]𝜀2 = 0,               (4) 

where 

𝑒𝑛 = exp(−𝜀𝑛𝑑 2⁄ ) , 𝐸 =
𝑒1 + 𝑒2

𝜀2 + 𝜀1
+

𝑒1 − 𝑒2

𝜀2 − 𝜀1
,                                         (5) 

𝜔1
2 = 1 ± ℎ −

𝜀1
2

4
+

[𝜀2
2𝐸 − (𝜀2 − 𝛾2𝜀1

2 4⁄ )𝑒1]𝜀1𝑒1

2(1 − 𝜀1𝜀2𝐸2)
,                                       (6) 

𝜔2
2 = 1 ± ℎ −

𝜀2
2

4
+

[𝜀1
2𝐸 − (𝜀1 − 𝛾1𝜀2

2 4⁄ )𝑒2]𝜀2𝑒2

2(1 − 𝜀1𝜀2𝐸2)
,                                       (7) 

𝑘1 =
[(𝜀1 − 𝛾1𝜀2

2 4⁄ )𝜀2𝐸𝑒2 − 𝜀1]𝜀1𝑒2

2(1 − 𝜀1𝜀2𝐸2)
, 𝑘2 =

[(𝜀2 − 𝛾2𝜀1
2 4⁄ )𝜀1𝐸𝑒1 − 𝜀2]𝜀2𝑒1

2(1 − 𝜀1𝜀2𝐸2)
,            (8) 

𝛽11 =
𝛽1 + 𝛽2𝑒1

2

2(1 − 𝜀1𝜀2𝐸2)
, 𝛽22 =

𝛽1𝑒2
2 + 𝛽2

2(1 − 𝜀1𝜀2𝐸2)
, 𝛽12 =

𝛽1𝑒2 + 𝛽2𝑒1

2(1 − 𝜀1𝜀2𝐸2)
.               (9) 

When ε2, γ2, β2, a2 = 0 or d → ∞ can be obtained from (3), (4) is an equation for describing the 

LMW dynamics in a three-layer ferromagnetic structure. Dynamic equations (3) and (4) are the 

equations of an oscillatory system with two coupled oscillators. The solution of this system in the 

absence of damping (α = 0) has the form: 

𝑎1 = 𝑎01 cos(𝛺1𝑡 + 𝜃1) + 𝜂2𝑎02 cos(𝛺2𝑡 + 𝜃2),                                       (10) 

𝑎2 = 𝜂1𝑎01 cos(𝛺1𝑡 + 𝜃1) + 𝑎02 cos(𝛺2𝑡 + 𝜃2).                                       (11) 

From (10) and (11) it follows that the LMW oscillations on two thin layers in the absence of damping 

are the sum of two harmonic oscillations. Oscillations frequencies: 

𝛺1,2
2 = [𝜔1

2 + 𝜔2
2 ∓ √(𝜔1

2 − 𝜔2
2)2 + 4𝑘1𝑘2] 2⁄ ,                                       (12) 

initial phases θ1 and θ2, amplitudes |a01| and |η2a02| on the first thin layer and |η1a01| and |a02| on the 

second, where the coefficients, determining the effect of one LMW on another, are equal: 

𝜂1 =
𝜔2

2 − 𝜔1
2 − √(𝜔1

2 − 𝜔2
2)2 + 4𝑘1𝑘2

2𝑘1
, 𝜂2 =

𝜔1
2 − 𝜔2

2 + √(𝜔1
2 − 𝜔2

2)2 + 4𝑘1𝑘2

2𝑘2
.    (13) 

We turn to the normal or basic coordinates, each of which varies with the same frequency: 

(𝑎1 − 𝑎2𝜂2) (1 − 𝜂1𝜂2)⁄ = 𝑎01 cos(𝛺1𝑡 + 𝜃1) = 𝜑1,                                    (14) 

(𝑎2 − 𝑎1𝜂1) (1 − 𝜂1𝜂2)⁄ = 𝑎02 cos(𝛺2𝑡 + 𝜃2) = 𝜑2,                                    (15) 

and dynamic equations can be reduced to two uncoupled differential equations regarding the main 

coordinates: 

�̈�1 + 𝜑1𝛺1
2 = 0, �̈�2 + 𝜑2𝛺2

2 = 0.                                                  (16) 

Oscillations (10)–(11) can also be represented as beats with a beating frequency equal to the difference 

between the main oscillations frequencies and with an amplitude varying from |a01 + η2a02| to |a01 – 

η2a02| and from |a02 + η1a01| to |a02 – η1a01|. 

Figure 1 shows the dependence of the main oscillations frequencies on d. When ε2, γ2 = 0: 

𝛺1,2
2 = 1 ± ℎ − 𝜀1

2 4⁄ , 1 ± ℎ, 𝜂1 = 0, 𝜂2 = −2.                                      (17) 
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           c       d 

           

           e       f 

Figure 1. Dependence of frequencies Ω1 (lower lines) and Ω2 (upper lines) on the distance between 

thin layers d with parameters: γ1 = γ2 = 0, h = 0: a) ε1 = 0.1, b) ε1 = 0.3, c) ε1 = 0.6, d) ε1 = 0.9; h = 0, ε1 

= 0.9: e) γ1 = γ2 = 1, f) γ1 = γ2 = –1: points – ε2 = 0, point line – ε2 = ε1/3, dashed line – ε2 = 2ε1/3, solid 

line – ε2 = ε1. 
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When d → ∞ we have en = 0, E = 0 and when ε1 > ε2: 

𝛺1,2
2 = 1 ± ℎ − 𝜀1,2

2 4⁄ , 𝜂1,2 = 0.                                                   (18) 

From figure 1a, b, c, d it can be seen that as the distance between the thin layers decreases, 

frequency Ω1 decreases the more, the larger the values of ε1 and ε2 are. In this case frequency Ω2 

increases much more significantly, but at a certain value of d it begins to decrease. The bigger ε1 and 

ε2/ε1, the stronger is the increase in Ω2 and the smaller is the value of d, after which Ω2 begins to 

decrease. Similar is the behaviour of the frequency difference with decreasing d. It increases the more, 

the greater the value of ε1 and ε2/ε1, and at a sufficiently small value of d it decreases again. Thus the 

beat period is reduced to a certain value, and then increases again. For γ1 = γ2 = 0 for different values 

of ε1 the dependence of the coefficients η1,2 on the product of D = ε1d and the ratio of ε2/ε1 is almost the 

same (figure 2). In this case, we assume that ε2 ≤ ε1. Coefficient η1 increases to D ≈ 2, then decreases, 

passes through zero and becomes negative. Its value is the bigger (and the value of D, at which the 

maximum value is reached, and the value of D at which it passes through zero, is the less) the larger 

the value of ε2/ε1 is. Coefficient η2 is negative, its modulus also increases to some value of D < 2, and 

then decreases, but does not pass through zero. Thus, as D decreases to a certain value, the amplitude 

difference at the beats increases. The influence of the LMW existence on a thin layer with a smaller 

anisotropy inhomogeneity on the LMW amplitude on another thin layer is greater than the influence of 

the first on the amplitude of the second. With the same anisotropy inhomogeneities and exchange ε1 = 

ε2 = ε, γ1 = γ2 = γ: 

𝑒𝑛 = exp(−𝜀𝑑 2⁄ ) = 𝑒𝑑 , 𝐸 = (1 𝜀⁄ + 𝑑 2⁄ )𝑒𝑑 ,                                     (19) 

k1 = k2 = k < 0 for γ ≥ 0. For γ < 0 as d decreases less than a certain value, we have k > 0. The bigger is 

|γ|, the bigger is d at which the sign changes. When γ = – 1 it happens at d ≈ 0,5. When k < 0 

𝛺1,2
2 = 1 ± ℎ −

𝜀2

4
+

[(𝛾𝜀 4⁄ − 1)𝑒𝑑 ∓ 1]𝜀2𝑒𝑑

2(1 ± 𝜀𝐸)
, 𝜂1,2 = ±1.                          (20) 

When d = 0 

𝛺1,2
2 = 1 ± ℎ − 3𝜀2 4⁄ + 𝛾𝜀3 16⁄ , ∞,                                              (21) 

i.e. the frequency Ω1 decreases to 0.5 with ε = 1, h, γ = 0, and Ω2 increases up to infinity. The 

frequency difference also increases up to infinity, i.e. the periods of oscillations and beats reduce to 

zero. Thus, for identical thin layers, as the distance decreases, the amplitude difference of the beats 

does not change, and the period of the beats decreases from infinity to zero. An external magnetic field 

causes either decrease or increase in the frequencies Ω1,2 and does not affect the coefficients η1,2 at all. 

For small d positive γ slightly changes the values of frequencies and coefficients (figure 1e), and 

negative γ causes more significant changes (figure 1f). 

 

Figure 2. Dependence of the coefficients η1 

(upper lines) and η2 (lower lines) on the product 

of the magnetic anisotropy constant 

inhomogeneity value for the distance between 

thin layers D = ε1d with parameters γ1 = γ2 = 0: 

points – ε2 = 0, point line – ε2 = ε1/3, dashed line 

– ε2 = 2ε1/3, solid line – ε2 = ε1. 
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3.  Conclusion 

The dynamics of localized magnetization waves in multilayer ferromagnetic structures was 

considered. It was shown that in the presence of a five-layer ferromagnetic structure, the equations, 

describing coupled localized magnetization waves dynamics, are the equations of an oscillatory 

system with two degrees of freedom. The oscillations represent the sum of two harmonic oscillations 

and have the form of beats. The dependences of the oscillations frequencies, beats, and coefficients 

that determine the amplitudes difference during the beats on the distance between thin layers were 

found. The effect of the external magnetic field, magnetic anisotropy parameters, and exchange 

interaction in thin layers on these dependences was studied. The values of frequencies and coefficients 

were calculated for some limiting cases: for an infinite distance between thin layers and for the three-

layer structure. In the case of two thin layers with the same magnetic parameters, as the distance 

between the layers decreases, the beat frequency increases from zero to infinity, and the coefficients 

are constant and equal to one in absolute value. In the case of two thin layers with different values of 

magnetic parameters, it was shown that with a decrease in distance between the layers, the beat 

frequency and the coefficients magnitude first increase from zero to some maximum value, and then 

decrease. The value of one of the coefficients passes through zero and changes sign. 
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