
ISSN 0021�3640, JETP Letters, 2015, Vol. 101, No. 12, pp. 835–839. © Pleiades Publishing, Inc., 2015.
Original Russian Text © E.G. Ekomasov, A.M. Gumerov, R.V. Kudryavtsev, 2015, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2015, Vol. 101, No. 12,
pp. 935–939.

835

An increasing number of physical applications in
different fields of physics have been described recently
by the dynamics of solitons [1, 2]. For example, soli�
tons of the sine�Gordon equation in condensed matter
physics describe the domain boundaries in magnets,
dislocations in crystals, fluxons in Josephson contacts
and junctions, etc. [3]. The effect of perturbations
often leads to a considerable variation of the soliton
structure [1, 2]. The internal degrees of freedom of
solitons can be excited, which can play the determin�
ing role in some physical effects. The effect of the spa�
tial modulation (inhomogeneity) of the periodic
potential (or the presence of an impurity in the sys�
tem) on the dynamics of solitons of the sine�Gordon
equation was studied in many works (see, e.g., [1–6]).
The classical�particle model for the interaction
between a kink and an impurity is applicable when the
impurity does not allow the existence of an impurity
mode, i.e., a localized oscillating state on the impurity
[1, 2]. The importance of the impurity modes for the
dynamics of the kink was shown in [4–7]. We note
here the appearance of such an interesting effect as the
reflection of the kink with inertial motion in a dissipa�
tionless medium by the “attracting” impurity owing to
the resonance energy exchange between the transla�
tion mode of the kink and the impurity mode. How�
ever, experimental works on the observation of this
effect have not yet been performed obviously because
real physical systems are always characterized by dissi�
pation, which can critically affect the behavior of a
system. In this respect, it is necessary to study the
influence of damping and the external force on the
appearance of the resonance effects in the motion of

kinks of the sine�Gordon equation in the model with
the “attracting” impurity and to find the critical
parameters of the real physical system suitable for the
observation of such effects.

We consider a system determined by the
Lagrangian

(1)

where K(x) = 1 – εδ(x) simulates a point impurity, δ(x)
is the Dirac delta function, 0 < ε < 1 is a constant, and
h is the parameter determining the external force
amplitude. To take into account damping in the sys�
tem, we use the Rayleigh dissipation function:

. (2)

We note that Eqs. (1) and (2) can describe, e.g., the
dynamics of the domain boundaries in ferromagnets
and weak ferromagnets [8]. The substitution of
Eqs. (1) and (2) into Lagrange–Euler equations with
allowance for dissipation leads to the equation of
motion for the scalar field u(x, t) in the form

. (3)

This equation is the modified sine�Gordon equation.
In the absence of the impurity, external force, and
damping, Eq. (3) transforms to the sine�Gordon
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equation and has the exact solution in the form of a
topological soliton (or kink):

, (4)

where γ = (1 – v2)–1/2, 0 < v < 1 is the velocity of the
kink, and X(t) = vt + x0 is the coordinate of the kink
center. At v � 1 and γ ≈ 1, by solving the linearized
sine�Gordon equation in the absence of the external
force and damping, one can find the expression
describing the structure of the impurity mode:

, (5)

where a(t) = a0cos(Ωt + θ0), Ω =  is the fre�
quency of the impurity mode, and θ0 is the initial
phase.

The case of the single point impurity disregarding
the external force and decay was studied in detail in [1,
4]. It was shown that the impurity acts as a potential in
the approximation of the “undeformable” kink. For
the corresponding sign of the constant ε, it acts on the
kink as an attracting potential. As a result, the soliton
can be localized. For the “deformable kink” approxi�
mation, the possibility of the excitation of the impurity
mode and its resonance interaction with the kink was
taken into account. The interaction of the kink with
the spatially extended impurity was also studied for

u0 x t,( ) 4 γ± x X t( )–[ ]{ }exp( )arctan=

u1 x t,( ) a t( ) ε x /2–( )exp=

1 ε2
/4–

both the undeformable and deformable kink models
[5, 9, 10].

We consider the approximate analytical solution of
Eq. (3) by the collective variable method [1, 2]. The
coordinate of the kink center x(t) and the impurity
mode amplitude a(t) are taken as collective coordi�
nates. The ansatz is a sum of the kink given by Eq. (4)
and the impurity mode specified by Eq. (5): uansatz =

u0 + u1. For simplicity, we assume that γ = 1, and (t),
a(t), and (t) are sufficiently small (on the order of ε).
In this approximation, u1 � u0. Then, we substitute the
ansatz uansatz into Lagrangian (1), expanding cosu and
cosu/2 in a Taylor series in ε (in a(t)) up to the second
order terms. Integration gives

(6)

where

(7)

The expression for the Rayleigh function given by
Eq. (2) is calculated analogously:

. (8)

Using the Lagrange–Euler equations, taking into
account Eqs. (6)–(8), one can obtain equations of
motion for collective coordinates in the form

(9)

Comparison of the system of differential equations (9)
with a similar system [1] obtained for the dissipation�
less case indicates that allowance for damping and the
external force (within the considered approximation)

leads to the addition of terms –8  and
⎯ (t)α in the first and second equations, respectively.
The effect of the external force on the impurity mode
in this approximation is disregarded (as a term of sec�
ond�order smallness) and the coefficient h in the sec�
ond equation of the system is absent.

We analyze the behavior of the kink satisfying
Eqs. (9). The typical simulation time was tend = 500.
Figure 1 shows the time evolution for several cases.

The initial energy of the kink  and the work of the
external force Eex are spent not only on the excitation
of the impurity mode Eim but also on damping in the
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Fig. 1. (Color online) Time dependences of the coordinate
of the kink center X(t) obtained by the simulation of system
(9). Simulation parameters are ε = 0.7, X(0) = –10, a(0) =

0, (0) = 0. (a) (1) α = 0.002, h = 0, (0) = 0.4; (2) α =

0.02, h = 0, (0) = 0.7; (3) α = 0.02, h = 0.008, (0) =

0.4; (4) α = 0.02, h = 0, (0) = 0.6; (b) (1) α = 0.002, h =

0, (0) = 0.377; (2) α = 0.002, h = 0, (0) = 0.3486.
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system E
α
:  + Eex = Ekink + Eim + E

α
. Therefore,

at the inertial motion (h = 0), the kink does not go to
infinity at all and, after a certain time, stops at a cer�
tain point. This is seen in Fig. 1a (curve 1 for weak
damping α = 0.002 and curve 2 for stronger damping
α = 0.02).

If the external force h > 0 acts on the system and the
dissipation losses E

α
 are compensated by the energy

input Eex, the kink may go to infinity (+∞) if its energy
is sufficient for it to leave the attracting potential of the
impurity (see Fig. 1a, curve 3).

The results showed that the resonance interaction
between the kink and impurity mode is characteristic
of system (9), as well as of the dissipationless case. As
a result, the kink can even leave the attractive potential
of the impurity after repeatedly crossing it. However,
these variants of evolution are observed only at weak
damping and the inertial motion of the kink. For
example, in Fig. 1b plotted at α = 0.002, the kink is
reflected in the opposite direction after 14 crossings of
the impurity (see curve 1) and in the initial direction
after 11 crossings of the impurity (see curve 2). At
stronger damping (e.g., α = 0.02), similar variants of
evolution were not observed. In addition, the kink can
be “trapped” by the attractive potential of the impu�
rity. The amplitude of its translational oscillations
decreases quite rapidly (see Fig. 1a, curve 4). The
impact of the external force h does not lead to the
appearance of the resonance reflections of the kink,
and the arising cases of the kink trapping differ weakly
from the case of h = 0 (see Fig. 1a, curve 4).

A more complete picture of the kink–impurity
interactions was shown by the example of two cases: at
weak damping α = 0.002 and strong damping α = 0.02
(the other simulation parameters are h = 0, ε = 0.7,
X(0) = –10, a(0) = 0, and (0) = 0). The correspond�
ing dependences of the calculated quantities on the

initial velocity of the kink v0 = (0) are shown in
Figs. 2–4 with the step δv = 10–4 of the parameter v0.

Figure 2 shows the number of crossings of the
impurity Cim as a function of v0. The single crossing of
the impurity Cim = 1 (Fig. 1a, curves 1 and 2) takes
place only if v0 exceeds a certain threshold value. At
Cim > 1, an even Cim value corresponds to the reso�
nance reflection in the opposite direction (Fig. 1b,
curve 1) and an odd Cim value in the initial direction
(Fig. 1b, curve 2). The case where the kink remains
localized on the impurity is absent in Fig. 2 since it
corresponds to Cim(v0) → ∞. The study showed that
the appearance of weak damping (Fig. 2a) in the sys�
tem significantly reduces the number of the resonance
windows and, consequently, the Cim value. At strong
damping, the resonances disappear completely
(Fig. 2b).

It should be noted that the dependences vend(v0)
can be disregarded when studying the resonance

Ekink
0

a·

X·

Fig. 2. (Color online) Number of crossings of the impurity
by the kink Cim versus the initial velocity of the kink v0 in
model (9) with α = (a) 0.002 and (b) 0.02.

Fig. 3. (Color online) End position of the kink Xend =
X(tend) versus the initial velocity of the kink v0 in model (9)
with α = (a) 0.002 and (b) 0.02.

Fig. 4. (Color online) Maximum ( ) and minimum

( ) of the translational oscillations of the kink versus

the initial velocity of the kink v0 in model (9) with α = (a)
0.002 and (b) 0.02.
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reflection windows (see, e.g., [5, 6]) since the final
velocity of the kink in the long�term simulation is
either zero (in the case of inertial motion) or the sta�
tionary velocity vst(h) (in the case of motion under the
impact of the external force). For this reason, the use
of the v0 dependence of the final position of the kink
Xend = X(tend) provides more information (see Fig. 3).
The case Xend < 0 corresponds to the reflection of the
kink from the impurity, the case Xend > 0 corresponds
to the passage of the kink through the impurity, and the
case Xend = 0 corresponds to the trapping of the kink on
the impurity. The study of these dependences (analo�
gous to Cim(v0)) showed that the increase in damping
leads to the decrease in the number of resonance win�
dows. At strong damping (Fig. 3b), the resonances dis�
appear completely.

The amplitude of the dependence X(t) during the

first period of the kink oscillations  provides more

information. We consider the maximum (  at

Cim ≥ 2) and minimum (  at Cim ≥ 3) of the depen�
dence X(t) in this interval (Fig. 5). Figure 4 shows the

dependences (v0) and (v0). It can be seen

that  increases monotonically with v0, while 
shows a periodic dependence on v0. This is explained

by the fact that  is calculated after the first cross�
ing of the impurity, when the impurity mode is not

excited, a(t*) = 0, while  is calculated after the
second crossing of the impurity by the kink. Already at
the second crossing, the kink interacts with the excited
impurity mode, a(t**) ≠ 0. It can be seen from the
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dependence (v0) that the wide windows (Cim = 2)
at weak damping (Fig. 4a) are transformed into small
minima at strong damping (Fig. 4b). This indicates
that the resonance interaction between the kink and
impurity mode still takes place, but losses in the sys�
tem leave no energy for the kink to leave the attractive
potential of the impurity.

Further, we compare the results obtained using the
analytical model given by Eq. (9) with the results of the
direct numerical calculations using initial equation (3).
We use the finite difference method for numerically
solving Eq. (3). We chose the three�layer explicit
scheme of the solution with the approximation of
derivatives on the five�point template of the “cross”
type (see, e.g., [9, 10]). We use two schemes of the
numerical experiment (by analogy with the real phys�
ical experiment, which can be performed, e.g., in a
real magnetic system [11]). The first scheme assumes
that the kink at rest at the initial time instant is accel�
erated to a velocity close to the stationary one and then
crosses the impurity. The second scheme makes it pos�
sible to study only the effect of damping. In this case,
after the kink reaches a velocity close to the stationary
one, the external force is switched off and the further
motion of the kink through the region of the impurity
localization occurs inertially. Since all the calculations
below were performed according to the above schemes
of the experiment, where the kink first is accelerated to
the stationary velocity by the external force h, the
velocity of the stationary motion of the kink character�
istic of the given α and h values is taken as the initial

velocity of the kink v0: v0 = vst(h, α) = (t) = h/α.

Figure 6 shows the dependences (v0) calcu�

lated with the step δv = 3 × 10–5 of the parameter v0.
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Fig. 5. (Color online) Time dependences of the coordinate
of the kink center X(t) obtained by the simulation of system

(9). The determination of the maximum ( ) and min�

imum ( ) of the translational oscillations of the kink is

shown;  is the first period of the oscillations of the

kink in the region of the impurity.

Akink
I

Akink
II

Tkink
1

Fig. 6. (Color online) Minimum of the translational oscil�

lations of the kink  versus the initial (stationary)

velocity of the kink v0 in model (3) in the case of (a, b) the
inertial motion of the kink and (c) the motion under the
impact of the external force h at α = (a) 0.002 and (b, c)
0.02.
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For the inertial motion of the kink (Figs. 6a and 6b),
the situation analogous to that in Fig. 4b is observed.
Even weak damping (α = 0.002 in Fig. 6a) leads to the
disappearance of the resonance reflection windows.
This can be explained by the fact that the numerical
calculation involves an additional damping channel in
the form of the radiation of nonlocalized waves at the
interaction between the kink and impurity as com�
pared to Eq. (9) [9]. This leads to considerable losses
of the kink energy even at slight damping. It was shown
in [9] that this damping channel can be comparable
with conventional damping. At stronger damping (α =
0.02 in Fig. 6b), the amplitude of the translational
oscillations of the kink decreases noticeably. A con�
stant external force (see Fig. 6c) further weakens the
effect of the resonance interaction, and the amplitude
of the translational oscillations of the kink becomes
lower than that in the case in Fig. 6b, since the external
force hampers the motion of the kink in the opposite
direction (at oscillations in the region of the impurity).

To conclude, we note that ferromagnets and weak
ferromagnets (having weak damping) [8, 11] fully sat�
isfy the above parameters for the possible observation
of the resonance interaction of kinks of the sine�Gor�
don equation with localized waves. The creation of
certain conditions, e.g., a three�layer structure with a
central thin layer with the magnetic anisotropy lower
(or of another type) than that in thick layers, upon
crossing the thin layer by the domain boundary can
lead to the generation of localized magnetic inhomo�
geneities of the breather type [12] and the resonance
interaction between them. To find the resonance
reflection and quasitunneling effects in real physical
experiments, one can apply the method of measuring
the amplitude of the translational oscillations of the
kink localized in the region of the impurity and use
physical systems with rather weak damping. Though a

point impurity is impossible in a real system, the pres�
ence of an extended impurity in it is possible. This
should also lead to the possibility of the observation of
the sought effect.
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