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Abstract
Collective variables method is used to derive a set of differential equations to describe the dynamics of a kink in the sine-Gordon
model with two identical point impurities taking damping into account. It is shown that the scenarios of kink interaction with the
waves localized on the impurities, found from the reduced model, are similar to those obtained earlier by numerical integration of
the continuous sine-Gordon equation. For the case of the kink passage through the region with the impurities, the structure and
properties of the arising on impurities long-lived four-kink multisolitons are analyzed. For the approximate analytical description
of the two bound impurity-localized nonlinear waves, the system of differential equations for harmonic oscillators with elastic
link is obtained. The analytical model qualitatively reproduces the results of the sine-Gordon equation numerical simulation. The
cases of large and small distances between impurities are analyzed. The results of our study uncover new features of the kink-
impurity interaction which is important for a number of applications where the sine-Gordon model is used.
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1 Introduction

Although solitons initially appeared in the studies of inte-
grable systems, very soon the solitary waves in non-
integrable systems became a hot topic because they de-
scribe many physical phenomena in hydrodynamics, con-
densed matter physics, field theory, etc. [1–3]. For exam-
ple, the sine-Gordon (SGE) equation, which is an integra-
ble partial differential equation, is one of the paradigms in
the theory of solitons. It is a fundamental model in many
areas of physics. For instance, the sine-Gordon solitons
describe the domain walls in magnetics, dislocations in

crystals, fluxons in superconducting Josephson junctions
and crossings, etc. [4]. Integrable models describe real
physical systems only with certain approximation [4] and
it is very important to study the sine-Gordon equation tak-
ing into account the perturbations arising in particular ap-
plications. Various types of perturbations can noticeably
influence the soliton dynamics. A great number of works
have been dedicated to the study of spatially dependent
perturbations in the sine-Gordon model [5–43]. The effect
of small perturbations on the SGE solution dynamics can
be analyzed in frame of a well-developed perturbation the-
ory (see, e.g., [1, 2, 5–8]), while the case of large
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perturbations is usually treated with the help of numerical
methods (see, e.g., [5, 7, 16]). In Refs. [30, 33], the authors
have shown the existence of an internal (shape) mode of
the sine-Gordon kink in the presence of spatially depen-
dent external forces and damping.

Many papers study the effect of spatial modulation of
the periodic potential (or presence of impurities in the sys-
tem) on the SGE solitons dynamics [1, 2, 5–7, 13–19]. The
SGE model with impurities describes, for example, multi-
layer ferromagnet [40–43]. The importance of the impurity
modes in the kink dynamics has been shown in [5, 14–19,
34]. The structure and properties of localized nonlinear
waves excited on an impurity were analyzed numerically
in [26–29]. The case of several delta-shaped point impuri-
ties, which are of interest in some physical applications
[44], and even the case of a spatially modulated harmonic
potential [25] were considered. The possibility of excita-
tion of a kink-impurity mode as a result of kink interaction
with an impurity has also been considered, and a consider-
able change in the kink dynamics after the interaction has
been reported [5, 6, 16].

SGE kinks have received a lot of attention from the
researchers, while i t is much less known about
multisoliton solutions (see, e.g., [27, 45–51]). Earlier
[45, 46], an interesting three-kink wobble type SGE solu-
tion was found. In [27], it was shown that such SGE
solution can be excited at a kink pinned by an attractive
impurity. In the case of two identical impurities, which
models a five-layer ferromagnet, strong collective effects
in the system were revealed in the absence of damping
[40, 47, 48]. For instance, in such structures, SGE
multisolitons can be excited and a particular type of
four-kink multisoliton was studied. Additionally, another
interesting effect of quasi-tunneling was revealed, in
which a kink passing through a double impurity needs
less kinetic energy than for passing a single impurity of
the same sizes. All the results mentioned above were ob-
tained using numerical methods, while it is desirable to
solve the problem of the kink interaction with two impu-
rities using analytical methods, for example, the collective
variables method.

In this paper, the interaction of SGE kink with nonlin-
ear waves localized on two identical point impurities is
considered. Using the collective variables method, taking
damping into account, a set of differential equations that
describes the dynamics of the kink center and the waves
localized on the impurities is derived. Possible scenarios
for the kink interaction with localized waves are analyzed.
For the case of the kink passage through the region with
the impurities, the structure and dynamics of four-kink
solitons excited on impurities are studied using both the
reduced set of equations and numerical calculations for
the continuum SGE model.

2 Main Equations and Results of Kink
Dynamics in the Model with Two Impurities

Let us consider a system defined by the Lagrangian

L ¼ ∫
þ∞

−∞

1

2
u2t −

1

2
u2x− 1−εδ xð Þ−εδ x−dð Þ½ � 1−cosuð Þ

� �
dx; ð1Þ

where the term εδ(x) simulates a point impurity, δ(x) is Dirac
delta function, and ε is a constant. Rayleigh dissipation func-
tion has the form

R ¼ ∫
þ∞

−∞

1

2
αu2t dx ; ð2Þ

where α is the damping parameter. The Lagrangian (1) corre-
sponds to the equation of motion for a scalar field u(x,t) in the
form

utt−uxx þ sinu ¼ εδ xð Þ þ εδ x−dð Þ½ �sinu−αut; ð3Þ
where the damping (2) is taken into account. Equation (3) is
the modified sine-Gordon equation (MSGE) considered here.
The perturbation terms in the right-hand side of Eq. (3) de-
scribe, for example, the five-layer ferromagnet with different
values of the magnetic anisotropy ε in different layers [41, 42].
Equation (3) has, for the zero right-hand side, a solution in the
form of a kink

u0 ¼ 4arctan ex−x tð Þ; ð4Þ
where x(t) is the kink center coordinate. On the other hand, Eq.
(3) with zero right-hand side has a spatially localized solution
in the form of resting breather [1, 2].

u x; tð Þ ¼ 4arctan

ffiffiffiffiffiffiffiffiffiffiffi
1−Ω2

p

Ω

sin Ωtð Þ
cosh x−x0ð Þ

ffiffiffiffiffiffiffiffiffiffiffi
1−Ω2

p� �
2
4

3
5; ð5Þ

where Ω is breather frequency and x0 is the coordinate of its
center. Let us study the kink dynamics with regard to the
excitation of localized waves on the impurities. For the theo-
retical analysis of the structure and dynamics of Eq. (3) solu-
tions, it is possible to use an approximate collective coordinate
approach previously applied to the analysis of the impurity
mode oscillation at a single point impurity [1, 2]. The presence
of waves localized on the two impurities (or impurity modes)
is taken into account through the introduction of two collec-
tive variables, a1 = a1(t) and a2 = a2(t), which are the ampli-
tudes of these waves. The expressions for the impurity modes
will be taken in the form similar to that used previously for the
case of single impurity [1, 5].

u1 ¼ a1 tð Þexp −ε xj j=2ð Þ ;
u2 ¼ a2 tð Þexp −ε x−dj j=2ð Þ:

�
ð6Þ
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In the small-amplitude oscillations approximation, assume
that an(t) = an0cos(Ωt + θ0), where θ0 is the initial phase.
When solving (3) for the case of single impurity, the following
expression for the impurity mode frequency can be obtained
Ω = (1 – ε2/4)1/2. The general solution of the problem, u, will
be searched in the form:

u ¼ u0 þ u1 þ u2 ð7Þ

Suppose that ẋ(t), an(t), and n(t) are sufficiently small (of
the order of ε), i.e., the impurity modes with small amplitudes
are excited at a slowly moving kink. In the framework of this
approximation, we consider

un≪u0 ð8Þ

Then the nonlinear terms in the Lagrangian (1) can be
expanded in the Taylor series up to the second-order terms
in ε [2].

cos u0 þ u1 þ u2ð Þ≈cosu0− u1 þ u2ð Þsinu0− u1 þ u2ð Þ2
2

cosu0 ð9Þ

Substituting (7) into (1) based on the approximation (9)
leads after integration to a new effective Lagrangian, depen-
dent on new variables x(t), a1(t), and a2(t),

L≈4x˙ 2 tð Þ þ a˙
2
1 tð Þ þ a˙

2
2 tð Þ þ 2a˙ 1 tð Þa˙ 2 tð ÞΕ

h i
=ε−2U1 x tð Þð Þ

−2U 2 x tð Þð Þ þ 2a1 tð Þ F1 x tð Þð Þ þ F2 x tð Þð Þe−εd=2
h i

þ2a2 tð Þ F1 x tð Þð Þe−εd=2 þ F2 x tð Þð Þ
h i

þa21 tð Þ −Ω2=εþ εe−εd=2þ U1 x tð Þð Þ þ U2 x tð Þð Þe−εd� �
þa22 tð Þ −Ω2=εþ εe−εd=2þ U 1 x tð Þð Þe−εd þ U 2 x tð Þð Þ� �
þ2a1 tð Þa2 tð Þ ε=2−ΕΩ2eεd=2=εþ U 1 x tð Þð Þ þ U 2 x tð Þð Þ

h i
e−εd=2;

ð10Þ

where

E ¼ 1þ εd=2ð Þe−εd=2;Ω2 ¼ 1−ε2=4;U 1 x tð Þð Þ
¼ −ε=cosh2 x tð Þð Þ;U2 x tð Þð Þ
¼ −ε=cosh2 x tð Þ−dð Þ; F1 x tð Þð Þ
¼ εsinh x tð Þð Þ=cosh2 x tð Þð Þ; F2 x tð Þð Þ
¼ εsinh x tð Þ−dð Þ=cosh2 x tð Þ−dð Þ ð11Þ

Similarly integrating (2) for the effective Rayleigh function
we obtain

R ¼ α 4x˙
2
tð Þ þ a˙

2
1 tð Þ þ a˙

2
2 tð Þ þ 2a˙ 1 tð Þa˙ 2 tð ÞΕ

h i
=ε

h i
ð12Þ

The equations of motion for x(t), a1(t), and a2(t) can be
obtained by inserting the effective Lagrangian (10) and

Rayleigh function (12) into the Lagrange system of equations
of the second order

4 €x tð Þ þ αx˙ tð Þ� � ¼ −U
0
1 x tð Þð Þ−U 0

2 x tð Þð Þ

þ a1 tð Þ F
0
1 x tð Þð Þ þ F

0
2 x tð Þð Þe−εd=2

h i

þ a2 tð Þ F
0
1 x tð Þð Þe−εd=2 þ F

0
2 x tð Þð Þ

h i

þ a21 tð Þ U
0
1 x tð Þð Þ þ U

0
2 x tð Þð Þe−εd

h i
=2

þ a22 tð Þ U
0
1 x tð Þð Þe−εd þ U

0
2 x tð Þð Þ

h i
=2

þ a1 tð Þa2 tð Þ U
0
1 x tð Þð Þ þ U

0
2 x tð Þð Þ

h i
e−εd=2

ð13Þ

€a1 tð Þ þ αa˙ 1 tð Þ þ a1 tð ÞΩ2
� �

1−Ε2
	 


=ε

¼ F1 x tð Þð Þ 1−Εe−εd=2
� �

−F2 x tð Þð Þεd=2e−εd=2

þa1 tð Þ −ε2d=4e−εd þ U1 x tð Þð Þ 1−Εe−εd=2
� �

−U2 x tð Þð Þεd=2e−εd
h i

þa2 tð Þ 1−Εe−εd=2
� �

ε=2þ U 1 x tð Þð Þ 1−Εe−εd=2
� �

−U 2 x tð Þð Þεd=2
h i

e−εd=2

ð14Þ

€a2 tð Þ þ αa˙ 2 tð Þ þ a2 tð ÞΩ2
� �

1−Ε2
	 


=ε

¼ F2 x tð Þð Þ 1−Εe−εd=2
� �

−F1 x tð Þð Þεd=2e−εd=2

þa2 tð Þ −ε2d=4e−εd þ U 2 x tð Þð Þ 1−Εe−εd=2
� �

−U1 x tð Þð Þεd=2e−εd
h i

þa1 tð Þ 1−Εe−εd=2
� �

ε=2þ U2 x tð Þð Þ 1−Εe−εd=2
� �

−U 1 x tð Þð Þεd=2
h i

e−εd=2:

ð15Þ

From the resulting set of equations, in the limiting case
d→∞, we can obtain the already known equations for the
case of kink motion in a model with one impurity [5]. First,
we shall consider the effect of two impurities on kink dy-
namics. In the calculations, it is assumed that at the time
t = 0 the kink is at relatively large distance from the impu-
rities, x(0) = − 20, and it moves toward them with the initial
velocity ẋ(0), while the impurity modes are not excited,
a1(0) = 1(0) = a2(0) = 2(0) = 0. In Fig. 1, possible kink dy-
namics are presented for different initial velocities and dis-
tances between impurities as described in the caption. The
following scenarios are shown: the kink is captured in the
region of the first (curve 3) or second (curve 2) impurity;
the kink oscillates between two impurities for a long time
(curve 1); the kink is reflected from the impurity region
and starts to move in the opposite direction (curve 5), or
passes through the impurity region (curve 4). In the last
two cases, oscillating localized high-amplitude nonlinear
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waves of breather type are excited on the impurities, which
significantly affect the dynamics of the kink. Firstly, a con-
siderable part of the kink initial energy can be spent on
their excitation. Secondly, the subsequent interaction of
the kink with these waves localized on the impurities can
result in resonance effects (for example, in the case of
single impurity, reflection from the attractive potential
can be observed for some parameters [5, 16, 28]). We can
also highlight the case when the impurities are located
close enough to each other, then the energy necessary for
the transition between them is small and the kink can os-
cillate between them for a long time (see curve 1 in Fig. 1).

Note that using numerical methods for solving Eq. (3), all
possible scenarios of kink motion described above were ob-
tained both for the case of point and extended impurities [40,
47]. From here, it follows that for our case of two identical
impurities, using the method of collective variables, one can
obtain all basic variants of the kink interaction with impurities
that were observed earlier in the numerical simulation of
MSGE (3).

3 Dynamics of the Multisoliton Waves

3.1 Analytical Results

Let us consider the structure and dynamics of nonlinear waves
localized on the point impurities excited, for example, as a
result of the kink scattering on the impurities. To obtain from
the system of Eqs. (13)–(15) for describing the dynamics of
two impurity modes in the absence of kink and damping, we

assume that x(t)→∞ and α = 0. Then the two equations for
the variables a1(t) and a2(t) assume the form:

€a1 tð Þ þ a1 tð ÞΩ2
� �

1−Ε2
	 


=ε

¼ −a1 tð Þε2d=4e−εd þ a2 tð Þ 1−Εe−εd=2
� �

ε=2e−εd=2; ð16aÞ

€a2 tð Þ þ a2 tð ÞΩ2
� �

1−Ε2
	 


=ε

¼ −a2 tð Þε2d=4e−εd þ a1 tð Þ 1−Εe−εd=2
� �

ε=2e−εd=2: ð16bÞ

The set of Eq. (16) for a1(t) and a2(t) can be written in a
shorter form with the use of the following notations

F ¼ F ε; dð Þ ¼ ε2

2

1− 1þ εd=2ð Þe−εd
1− 1þ εd=2ð Þ2e−εd e

−εd
2 ; ð17Þ

Ω2
0 ¼ Ω2

0 ε; dð Þ ¼ 1−
ε2

4
−
ε2

2

1þ e−εd=2
	 


e−εd=2

1þ 1þ εd=2ð Þe−εd=2 ð18Þ

Using (17) and (18), multiplying both Eq. (16) by
ε[1 – E2]−1, we obtain

€a1 tð Þ þ a1 tð ÞΩ2
0 ¼ a2 tð Þ−a1 tð Þ½ �F ;

€a2 tð Þ þ a2 tð ÞΩ2
0 ¼ a1 tð Þ−a2 tð Þ½ �F :

�
ð19Þ

The system (19) is a set of two ordinary differential equa-
tions of the second order. It follows from (19) that the breather
type waves localized on the impurities, in the small-amplitude
approximation, can be described by a system of two coupled
effective harmonic oscillators with the same proper frequency
Ω0(ε,d). Each of them is under external force (a2(t) –
a1(t))F(ε,d) (of elastic type) from the other oscillator. In this
case, the coupling coefficient F(ε,d) can vary, for example, by
changing parameter d, which is the distance between impuri-
ties. Let us analyze the behavior of functions (17) and (18) in
the limiting case d→∞,

lim
d→∞

F ε; dð Þ ¼ 0; ð20Þ

lim
d→∞

Ω2
0 ε; dð Þ ¼ 1−

ε2

4
¼ Ω2: ð21Þ

Expression (20) shows that with the parameter d increase,
the coupling coefficient vanishes, and (19) goes into the equa-
tions describing uncoupled harmonic oscillators. From (21),
one can see that frequency Ω0 in the limit d→∞ assumes the
value for a single impurity. In this case, the oscillators move
independently at the proper frequency of single impurity.

Let us study the dependence of expressions (17) and (18) on
the parameter d. Figure 2 shows that at d→∞, both functions
Ω0 and F asymptotically tend to the corresponding values giv-
en by (21) and (20), respectively. In the limit, d→ 0 function F
sharply increases, which corresponds to the increase of the

x

t
Fig. 1 Dependence of the kink center coordinate on time x(t), calculated
from (13)–(15) with ε = 0,7, α = 0.002, x(0) = − 20, a1(0) = 1(0) =
a2(0) = 2(0) = 0 and ẋ(0) = 0.24, d = 2 (curve 1); ẋ(0) = 0.24, d = 4.5
(curve 2); ẋ(0) = 0.20, d = 6 (curve 3); ẋ(0) = 0.29, d = 4 (curve 4);
ẋ(0) = 0.4, d = 3.1 (curve 5)
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bond rigidity between the effective oscillators. On the other
hand, Ω0(ε,d = 0) in this limit approaches the finite value cor-
responding to the duplicated effective oscillator, i.e., in the
expression for Ω one has to insert the value 2ε.

As it is known, the system of the two elastically coupled
harmonic oscillators may have solutions in the form of in-
phase or antiphase oscillations. To analyze properties of these
solutions, let us introduce the new variables:

φS ¼
a1 tð Þ þ a2 tð Þffiffiffi

2
p ; φA ¼ a1 tð Þ−a2 tð Þffiffiffi

2
p ð22Þ

By adding and subtracting equations in the system (19) and
using (22), one can come to the following set of equations

€φS þΩ2
SφS ¼ 0;

€φA þΩ2
AφA ¼ 0;

�
ð23Þ

where ΩS =Ω0, ΩA = (Ω0 + 2F)1/2. Thus, the oscillations de-
scribed by (19) can be regarded as a superposition of oscilla-
tions with symmetric ΩS and anti-symmetric ΩA modes,
which are commonly referred to as normal frequencies
(modes) of the system, and variables (22) are called normal
coordinates. In special cases, when the oscillations are in
phase or antiphase, the whole system, and each oscillator in
particular, oscillate at the corresponding normal frequency.
For clarity, let us consider a few special cases with specially
selected initial conditions. For example, at time t = 0 both
effective oscillators deflect from their equilibrium positions
on a0S and have the same speed υ0S. In this case, the move-
ment will be symmetrical (the effective elastic bond is not
stretched) and given by the following expression:

a1 tð Þ ¼ a2 tð Þ ¼ a0scosΩSt þ ȧ0s
ΩS

sinΩSt ð24Þ

If at t = 0, both effective oscillators are deviated by a0A in
different directions and have the same speed υ0A, then the anti-
symmetric vibrations are excited:

a1 tð Þ ¼ −a2 tð Þ ¼ a0acosΩAt þ ȧ0a
ΩA

sinΩAt ð25Þ

At an arbitrary choice of the initial conditions, motion of
the system is described by a superposition of (24) and (25):

a1 tð Þ ¼ a0scosΩSt þ ȧ0s
ΩS

sinΩSt þ a0acosΩAt þ ȧ0a
ΩA

sinΩAt;

a2 tð Þ ¼ a0scosΩSt þ ȧ0s
ΩS

sinΩSt−a0acosΩAt−
ȧ0a
ΩA

sinΩAt:

8><
>:

ð26Þ

Solution (26) can be obtained by solving Eq. (23), while
returning to the original variables (22).

3.2 Numerical Results

Let us consider possible dynamics of system (19) by means of
numerical integration with the use of the fourth-order Runge-
Kutta method for different initial conditions. Let us analyze
the type of oscillations depending on parameter d and initial
conditions. This will allow to test the correctness and accuracy
of calculation of the characteristic frequencies using the nu-
merical method, and to address the issue related to frequency
determination. To do so, we assume for simplicity ȧ1 (t = 0) =
0; ȧ2 (t = 0) = 0, and vary only a1(t = 0) = a01 and a2(t = 0) =
a02. Next, let us consider three cases corresponding to differ-
ent initial conditions. We use Fourier-decomposition to iden-
tify frequencies ΩS and ΩA.

The results of numerical simulation are shown in Fig. 3 for
the time evolution of a1 and a2 and for Fourier analysis of
these signals. Initial conditions are listed in the caption. The
initial conditions are chosen so that the case in Fig. 3a is close
to the phase oscillations, so the amplitude of the first frequen-
cy component in the Fourier spectrum is significantly higher
than that of the second component. Here, we can say that, in
this motion, symmetric summands of superposition (26) are
dominating. Another situation is observed in Fig. 3c, where
anti-symmetric summands are dominating. Thus, in particular
cases, when the oscillations are very close to either symmetric
or anti-symmetric cases, there can appear a problem with def-
inition of one of the frequency components. Therefore, for the
frequency components analysis, the best case is similar to that
shown in Fig. 3b with nearly equal contribution from symmet-
rical and anti-symmetric summands. In addition, the

Fig. 2 The dependence of
parameters of the systems (20)
and (21) on the distance between
impurities d: a F(ε,d); b Ω0(ε,d)
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calculated frequencies show good quantitative agreement with
analytical expressions for ΩS and ΩA.

Next, we consider the effect of parameter d that controls the
stiffness of the effective bond between oscillators (see Fig.
2a), on the emerging oscillation modes. As an example, we
present the results obtained only for the case ε= 0.7. The
calculations show that other considered cases are similar to
this one. Let us introduce in the initial conditions the initial
phase difference of the oscillators in order to excite the beating
oscillations. Figure 4 shows three different cases correspond-
ing to different values of the parameter d = {0.3, 1, 3}, which

by the nature of frequency spectra A(ω) can be (conditionally)
assigned to different oscillation modes.

For a short distance between the impurities, d = 0.3 (Fig.
4a), it is clear that the link is very hard. For any initial condi-
tions, the oscillation phase difference reduces in time to zero,
and after a transient period, the oscillators begin to move in
phase at a single frequency. The anti-symmetric mode is un-
stable and it cannot be realized. In the case of moderate dis-
tances between the impurities, d = 1 (Fig. 4b), the link is of
medium hardness and this results in strong beating of oscilla-
tions. Frequency components in the spectrum A(ω) are located

Fig. 3 Time evolution of the
deviations from the equilibrium
position of the first a1(t) and
second a2(t) oscillator, resulting
from numerical solution of (19)
and corresponding discrete
Fourier expansion A(ω) of a1(t).
Parameters: ε = 0.7, d = 2. Initial
conditions: а a01 = 0.5, a02 = 0.3,
b a01 = 0.5, a02 = 0, c a01 = 0.5,
a02 = − 0.3

Fig. 4 Time evolution of the
deviations from the equilibrium
position of the first a1(t) and
second a2(t) oscillator, resulting
from numerical solution of (19)
and corresponding discrete
Fourier expansion A(ω) of a1(t).
Parameters: ε = 0.7, а d = 0.3,
a01 = 0.5, a02 = 0; b d = 1, a01 =
0.5, a02 = 0; c d = 3, a01 = 0.5,
a02 = − 0.2
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far from each other. From Fig. 4c, for the case of large distance
between impurities, d = 3, one can see that the link is weak,
and oscillation beating is weak. Frequency components in the
spectrum A(ω) are located much closer. This oscillation mode
corresponds to the weak bond case (see, e.g., [52, 53]), and
general solution (26) can be simplified for it.

4 Dynamics of the Multisoliton Waves:
Numerical Results

To check the domain of applicability of the analytical model
and set of Eq. (19), obtained by perturbation theory for soli-
tons (collective coordinate method), let us investigate numer-
ically the structure and dynamics of localized nonlinear waves
by solving the original Eq. (3). To date, quite a number of
methods have been developed for the numerical solution of
such nonlinear differential equations. For example, a number
of studies [54, 55] use spectral and pseudospectral Fourier
methods for solving SGE. In the work [56], a compact
finite-difference scheme and DIRKN-method were used.
The method of lines is used in [57]. In this paper, the finite
differences method is used for the numerical solution of Eq.
(3). We select a three-layer explicit scheme with approxima-
tion of derivatives on a five-point pattern of the Bcross^ type.
It was previously applied to simpler SGE modifications (see
for example [7, 26]). Let Δx be the coordinate step and τ be
the time step. This numerical scheme of the second approxi-
mation order at Δx and τ has conditional stability when
(τ/Δx) ≤ 1/2. In addition, the scheme used is rather flexible
and it can be with minimal changes adapted both for other
modifications of one-dimensional Eq. (3), and for multidi-
mensional SGE variants.

The numerical algorithm to integrate Eq. (3) works as fol-
lows. At the time t = 0, we have SGE kink of the form

u0 x; tð Þ ¼ 4arctan exp �γ x−x tð Þð Þð Þ½ � ð27Þ

where γ = (1 – v2)–1/2, v is the kink velocity, x(t) = vt + x0 is the
kink center coordinate. The boundary conditions are as fol-
lows: u(−∞, t) = 0, u(+∞, t) = 2π, u’(±∞, t) = 0. Using the grid
of N = 104 points, taking time as an iterative parameter and
following the conditions of the explicit scheme convergence,
the value of the function u(x,t) in the next time step was cal-
culated. From the found function u(x,t), we obtain the main
characteristics of the nonlinear wave. Numerical experiment
show that after the kink passage through the impurities, the
nonlinear waves are excited on each impurity, and those
waves are well described by the oscillating bell-shaped func-
tions u(x,t). For the case of one attractive impurity, there has
been shown previously [26] that the localized nonlinear wave
can be regarded as a resting breather, which is a bound kink-
antikink state. The amplitude of the excited breather depends
on the kink initial velocity. The breather oscillation frequency
ωbreather practically does not depend on the kink velocity and is
determined by the impurity parameters. In the case of two
impurities, the excited localized impurity modes interact with
each other, that is why the resulting MSGE solution can be
called a four-kink multisoliton.

Let us calculate frequency dependences of the localized im-
purity waves depending on the distance between the impurities.
Since the localized waves are excited by the kink passage, the
initial kink velocity v0 determines initial phase difference be-
tween the localized waves. It is important to note that it is
impossible to set an arbitrary initial oscillations phase difference
by changing v0. Consequently, it is impossible to excite the
entire spectrum of possible states. For example, it is not always
possible to excite anti-symmetric oscillation modes.

The solid lines in Fig. 5 plot the analytically calculated
symmetric (curve 2) and antisymmetric (curve 1) mode fre-
quencies of the system (19) as the functions of the parameter
d. The symbols show the same for the symmetric (curve 4)
and antisymmetric (curve 3) fluctuations of the MSGE
breathers. These frequency components were calculated using
the Fourier analysis method described above. The results pre-
sented in Fig. 5 suggest that there is qualitative agreement

Fig. 5 Possible values of the localized waves oscillation frequencies
depending on the distance between the impurities d for: a ε = 0.5 and b
ε = 0.7. Curve 1 is for the in-phase oscillation frequency ΩS (a02 = 0.5),

curve 2 is for the antiphase oscillation frequency ΩA (a02 = − 0.5), sym-
bols 3 is MSGE localized waves in-phase oscillation frequency, symbols
4 is MSGE localized waves antiphase oscillation frequency
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between the analytical and numerical results. The discrepancy
between the curves for the small values of d is primarily due to
the discrepancy between analytical expressions for Ω0(ε,d)
and F(ε,d) and the results of numerical calculation of the
MSGE breathers oscillations (see Fig. 6). Indeed, expressions
(17) and (18) describe well the bond between the effective
oscillators and their natural frequencies only for relatively
large values of d. However, the curves obtained numerically
from MSGE can be approximated by a simple exponential
dependence (Fig. 6, curves 3) of the form:

f xð Þ ¼ Aþ BeCx: ð28Þ

Figure 5 represents three qualitatively different parameter
regions (similar to the cases considered in Fig. 4).

In the region I (d < 2), only the in-phase mode was excited
by kink passage. Obviously, the antiphase mode excitation re-
quires much higher interaction energy. In the region II (2 < d <
4), there is a strong interaction between the localized impurity
waves with periodic energy pumping. In the region III (d > 4),
the increase of d results in localized impurity waves frequencies
asymptotical approach toΩsingle. In this region, by changing v0,
one can excite both in-phase and antiphase oscillations. As a
fundamental difference between the regions II and III, there can
be mentioned the fact that parameter v0 variation allows to
initiate the states which are much closer to a symmetric mode.

5 Conclusions

We have studied the sine-Gordon equation perturbed by the
introduction of the two identical delta-shaped impurities and
damping, as given by Eq. (3). Using the method of collective
variables that takes into account damping, we have derived the
set of differential equations describing the dynamics of the
kink and the waves localized on the two impurities. We have
described analytically the possible scenarios of the kink inter-
action with the waves localized on the impurities. Our conclu-
sion is that the reduced set of equations makes it possible to
describe all the basic scenarios of kink interaction with the

two-point impurities, which was confirmed by comparison
of the analytical results with the results of numerical simula-
tion of the continuous system.

We have shown that when the kink passes through the im-
purities, under certain conditions, it can excite the impurities of
the long-lived four-kinkmultisoliton. For the analytical descrip-
tion of the four-kink multisoliton in the form of the two nonlin-
ear waves localized on the impurities, the set of two differential
equations for harmonic oscillators coupled via elastic bond has
been derived. The analytical model qualitatively describes the
results of the numerical simulations for the continuous system.

Our results contribute to a deeper understanding of the
kink-impurity interactions in the Klein-Gordon fields which
are widely used in a number of physical applications.
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