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Interaction of sine-Gordon solitons in the
model with attracting impurities

Evgenii G. Ekomasov, Azamat M. Gumerov*† and Ramil R. Murtazin

Communicated by Prof. Amar Debbouche

We study properties of the localized solutions to the sine-Gordon equation excited on the attractive impurity by a moving
kink. The cases of one-dimensional and two-dimensional spatially extended impurities are considered. For the case of one-
dimensional impurity the possibility of excitation of the first even and odd high-amplitude impurity modes by the moving
kink is demonstrated. By linearizing the sine-Gordon equation the dispersion relations for the small-amplitude localized
impurity modes were obtained. The numerically obtained dispersion relations in the case of low oscillation amplitudes
are in a good agreement with the results of analytical calculations. For the case of two-dimensional impurity we show the
possibility of excitation of the nonlinear high-amplitude waves of new type called here a breathing pulson and a breathing
2D soliton. We suggest analytical expressions to model these nonlinear excitations. The breathing pulson and breathing
2D soliton are long-lived and can be of both symmetric and asymmetric type depending on the impurity type. The range
of the impurity parameters where the breathing pulson and breathing 2D soliton can be excited was determined. The
dependencies of the oscillation frequency and the amplitude of the excited impurity modes on the impurity parameters
are reported. Copyright © 2016 John Wiley & Sons, Ltd.
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1. Introduction

Solitons, initially studied in integrable systems, gave rise to the study on solitary waves in non-integrable systems to describe a number
of physical phenomena. For example, the sin-Gordon equation (SGE) is used for modeling wave propagation in geological media, in
molecular biology, field theory models, in elementary particle physics, to name a few [1–3]. The SGE soliton solutions help to describe
domain walls in magnetics, dislocations in crystals, fluxons in Josephson’s junctions, etc. [4–6]. In many cases behavior of solitons can be
effectively described by quasi-particles and then their dynamics can be presented by ordinary differential equations [7]. However, in the
presence of perturbations, the structure of solitons can be changed and they can be more accurately described by deformable quasi-
particles [5]. Soliton’s internal degrees of freedom can be excited in this case and they can play a very important role in a number of
physical processes [8–12]. Soliton internal modes can be responsible for the non-trivial effects of their interactions [13, 14]. The internal
modes can include the translational and pulsation modes describing long-lived oscillations of soliton width [15]. The effect of various
perturbations on the excitation of SGE soliton’s internal modes attracts a lot of attention of researchers. Local inhomogeneities are
ubiquitous in many physical systems, including those described by SGE, and it is very important to study the soliton scattering on such
impurities [5]. For instance, there exist many works devoted to the analysis of external force that varies in time and space [5, 9, 15–17].
Weak perturbations on the SGE solutions can be studied in frame of the perturbation theory well-developed for solitons [5, 7] but the
effect of strong perturbations is more often addressed numerically [18–21].

It is also very interesting to study the effect of an impurity in the system modeled by spatial modulation (inhomogeneity) of the
periodic potential [5]. Depending on the geometry of the system, one-dimensional or multi-dimensional problems can be physically
meaningful. The problem of scattering of SGE kinks on impurities in one-dimensional case has been under consideration for a long
time [7, 19, 22, 23]. For example, the model of classical particle is applicable to the problem of kink-impurity interaction in the case
when impurity itself does not support vibrational modes localized on the impurity [5]. The mechanisms of kink-impurity interactions
has been demonstrated in the works [5, 24–27]. Let us mention such an interesting effect as the reflection of a kink by an attractive
impurity due to the resonance energy exchange between translational kink’s mode and the impurity mode. Two-dimensional SGE has
been also studied for a long time with the use of analytical methods [28–32] and with the help of numerical methods [18, 28, 33]. For
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example, in the works [18, 34] the appearance and motion of flexural solitary waves on the kink interacting with a two-dimensional
impurity has been investigated. However, the possibility of excitation of various two-dimensional vibrational modes localized on the
impurity was not discussed in those works.

In the present study we analyze the interaction of SGE kink with an impurity in the case when large-amplitude nonlinear waves
localized on the impurity are excited as a result of interaction.

Let us consider the system defined by the following Lagrangian
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The corresponding equation of motion for the scalar field �.x, y, t/ has the following form
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where the function K.x, y/ defines the interaction of the field �.x, y, t/with the impurity.

2. One-dimensional case

The sine-Gordon model with the impurity extended in one dimension is defined by the Lagrangian (1) with

K.x/ D

�
1, x < x1, x > x2

1 ��K , x1 � x � x2
(3)

where W D x2 � x1 is the width of the impurity. Clearly,�K > 0 describes a potential well, while�K < 0 describes a potential barrier.
In the case K.x/ D 1 .�K D 0/ Equation (2) supports the exact solution in the form of topological soliton or, in other words, kink:

�.x, t/ D 2 arctan .expŒ�.v0/.x � v0t/�/ , (4)

where �.v0/ D .1� v2
0/
�1=2 with a parameter 0 < v0 < 1 defining the velocity of the kink. Equation (2) also admits the periodic in time

solution in the form of a breather,

�.x, t/ D 2 arctan
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where ! is the breather frequency and x0 is the coordinate of its center.
The case of K.x/ D 1 � "ı.x/ where ı.x/ is the Dirac delta function and 0 < " < 1 is a constant has been studied in [5]. It has been

demonstrated that in the frame of the underformable kink approximation the impurity acts as a potential and for the chosen sign of
" the potential is attractive and hence the soliton can be localized on the impurity. In the case of deformable kink, in addition to the
oscillatory motion of the kink in the potential generated by the impurity, a strong modification of the kink shape, having a resonant
character, can take place. The possibility of excitation of the impurity mode as a result of kink scattering that results in a considerable
change of kink dynamics has also been considered. For the case of finite size impurity of the form (3) the interaction of the kink with
the impurity has been analyzed for both non-deformable and deformable kinks [20, 22, 24].

Let us investigate the relation between the spectra of the impurity mode and the small-amplitude excitations of (1). We take into
account that for the one-dimensional case of (2) with K.x/ D 1 there exists the vacuum solution �˙.x, t/ D 0. We look for the spectrum
of the small-amplitude vibrations in the vicinity of this solution

�.x, t/ D �˙ C ı�.x, t/, ı�.x, t/� 1. (6)

Substituting (6) into (2) after linearization with respect to ı� , one gets the equation

Lı�.x/ D !2
nı�.x/, (7)

which is the Schrödinger equation with the operator L D � d2

dx2 C K.x/, where !n is the impurity mode frequency. Let us look for the
localized solutions of the Schrödinger equation (7). It is convenient to introduce the following notations

�2 D 1 � !2, k2 D !2 � .1 ��K/. (8)

For K.x/ defined by (3) even and odd solutions to (7) are possible [35]

‰C D

8̂<
:̂

AC1 e�x , x < �W=2
BC2 cos kx, �W=2 � x � W=2
BC3 e�x , x > W=2

(9)
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‰� D

8<
:

A�1 e�x , x < �W=2
B�2 sin kx, �W=2 � x � W=2
B�3 e�x , x > W=2

(10)

We subject the solution to the condition of smoothness and continuity at the point x D W=2 and obtain the following dispersion
relations for even (9) and odd (10) solutions, respectively,
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Because, in the considered case,�K and W are constant, equations (11,12) give the possibility to find all frequencies ! of the impu-
rity modes in the potential well of given size. The states with even and odd wave functions alternate and the first odd solution, that
corresponds to the second localized state, appears when the relation �2 D W2�K is satisfied.

Let us study numerically the large-amplitude localized impurity modes excited due to the interaction with a kink for the case�K � 0.
The most interesting case is when the size of the soliton is of the same order with the size of the impurity because in this case the soliton
shape is strongly affected by the impurity. To solve the equations of motion (2) numerically we use the iteration method for the explicit
scheme. The following algorithm was applied. Initially we have a SGE kink (4) moving with a constant speed. Boundary conditions have
the form �.˙1/ D 0,� ; � 0.˙1/ D 0. We introduce the mesh for the spatial coordinate and iterate with respect to time, taking into
account the convergence condition for the explicit scheme, to find the kink position at the next time step. The characteristics of the
nonlinear wave were found from the numerically constructed function �.x, t/.

The numerical experiments have demonstrated that the kink passing the impurity excites the bell-shaped nonlinear oscillatory wave.
We found that this oscillatory mode can be well fitted by the expression

��.x, t/ D A exp.�˛.t � t0// arctan
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which is a stationary breather (5) in the presence of damping with the coefficient ˛ and with an additional fitting parameter � . We
compare the numerically found time evolution of the field value at the center of the impurity .x D 0/ with that found from the
approximating formula (13). The numerical result and the result obtained from the fitting formula (13) overlap. Damping of the breather
is due to slow radiation of small-amplitude extended waves. Amplitude of the breather excited by the passing kink depends on the
kink velocity v0 (Figure 1) and the curve has a maximum with the value dependent on the impurity parameters�K and W .

The amplitude of the excited breather also depends on �K and W and it vanishes when �K ! 0, W ! 0, i.e., in the absence of
impurity.

Breather frequency !B is practically independent of the kink velocity v0, while it depends on�K and W as shown in Figure 2.
It can be seen that for�K ! 0, W ! 0 the breather frequency tends to unity but the frequencies of kink’s translational and pulsation

(oscillation of kink wigth) modes excited due to the interaction with impurity tend to zero [20]. This behavior can be easily understood

Figure 1. Breather amplitude Amax measured at the impurity center as the function of kink velocity v0 for (a) W D 1 and (b) W D 1.5. Curves 1 to 6 are for
�K D f0.5, 0.75, 1, 1.25, 1.5, 1.75g, respectively.

Figure 2. Dependence of the breather oscillation frequency on the parameters�K (a) and W (b). The solid lines correspond to the frequencies calculated from
(11), while scattered data was obtained by numerical integration of (2). In (a) curves 1 to 3 correspond to W D 0.5, W D 1, and W D 1.5, respectively, while in (b)
to�K D 0.5,�K D 1, and�K D 1.5, respectively.
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taking into account that breather energy scales as E � .1�!2
B/

1=2 [2] meaning that for vanishing size of the impurity the energy and the
amplitude of the breather also vanish. It can also be seen that the linear approximation for the first even solution described above gives
a good description of the excited breathers in the range of small amplitudes because the frequencies calculated from the analytical
expression (11) (solid lines in Figure 2) coincide with the frequencies found numerically by solving (2). Excitation of the first odd mode
(the second main state) will be discussed for the case of kink pinning by the impurity. In this case, as it was already mentionaed,
pulsation and translational modes can be excited on the kink [20]. In the case when kink pulsation mode frequency !pulse < 1, after a
transient period a state is formed that can be described with a good accuracy by the kink-type solution. Therefore, in our case the most
interesting is the range of parameters �K and W where !pulse ! 1 and the excited nonlinear wave (Figure 3(a)) differs considerably
from the kink solution (Figure 3(b)). Algebraic difference of the solutions has the form dramatically different from 13 and it is analogous
to the form of the odd solutions to the Schrödinger equation.

One should also take into account that for the case of large-amplitude nonlinear waves obtained numerically, a three-kink solution
can be not just a linear sum of the kink and breather solutions but a modified solution that takes into account kink vibrations described
by the wobble SGE solution [36, 37]. For yet increasing values of�K and W let us take into account that, as it has been shown in [4], at
the critical value of parameters,

W.1 ��K/ D 2, (14)

in the vicinity of the impurity a stable static soliton can exist whose amplitude can be estimated as

cos Amax D 2=ŒW.1 ��K/�. (15)

Numerical results show that for sufficiently large�K and W after the passing of kink, in the vicinity of the impurity a soliton is formed.
The dependence of soliton amplitude on�K and W (Figure 4) can be approximately expressed as cos A D 1.8=ŒW.1��K/�. In Figure 5
the ranges of the impurity parameters where the breather and the soliton can exist are presented and for comparison the curve defined
by (14) is plotted.

Figure 3. (a) Wobble kink profile and (b) its difference from the kink solution at different times, 1 for t D 1179.37, 2 for t D 1180.87, and 3 for t D 1182.37, for
the case W D 1,�K D 1.2 and initial kink velocity v0 D 0.2. The impurity center is at x� D �0.5.

Figure 4. The dependence of the stabilized soliton amplitude on the impurity width W at fixed �K D 2.8. Curve 1 gives numerical result, while curve 2
corresponds to (15).

Figure 5. Space of impurity parameters showing the range where passing kink excites a breather (above the lines 1 and 2), or a soliton (below the lines 1 and 2).
Line 1 was found numerically and line 2 is given by (14).
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3. Two-dimensional case

For definiteness let us take the impurity in the following form [18]

K.x, y/ D

�
1, x < x1, x > x2, y < y1, y > y2,
1 ��K , x1 � x � x2, y1 � y � y2,

(16)

where Wx D x1�x2 and Wy D y1�y2 specify the size of the impurity. Similarly to the one-dimensional case, Equation (2) was integrated
with the use of an explicit scheme. A uniform mesh with the step � was introduced for x and y coordinates,

xi D � i, i D �Nx , ..., Nx , yj D � j, j D �Ny , ..., Ny , (17)

and for the time t the mesh with the time step 	 was employed,

tn D 	n, n D 0, 1, ..., Nt , (18)

where Nx , Ny , Nt are integers. For Nx and Ny we took the values from 512 to 2048. It was confirmed that the number of mesh points for
the spatial coordinates does not noticeably affect the numerical results. Initially we have a SGE kink (4) moving with constant velocity.
The boundary conditions for the x-coordinate have the form �.˙Nx� , y/ D �0.˙Nx�/; � 0.˙Nx� , y/ D � 00.˙Nx�/ and for the y-coordinate
free edges are simulated.

Let us consider the case of �K > 0 when, as it was shown above, nonlinear waves localized at the impurity are excited due to the
interaction with the kink. In Figure 6 the process of kink-impurity interaction is presented and one can see that the nonlinear localized
wave radiating extended waves is excited. The wave is called here breathing pulson. If Wx D Wy then the breathing pulson is symmetric
with respect to x and y axis (Figure 7(a) and (b)) and the symmetry is lost for Wx ¤ Wy (Figure 7(c) and (d)). Firstly, the excited localized
wave has a bell shape and later (t > 20, curve 1 in Figure 8) the periodic oscillations can be seen at the center of the impurity having
coordinates .x�, y�/. With increase in the impurity size the oscillation frequency reduces. The amplitude decreases with time owing to
the radiation of extended waves. It should be noted that the extended waves cannot be described by the harmonic function because
they have a nonlinear nature (Figure 9). The breathing pulson can be regarded as a long-lived nonlinear excitation.

Figure 6. The excitation and evolution of a breathing pulson for the case Wx D 1, Wy D 3, and�K D 2. (a) t D 11.55, (b) t D 12.6, (c) t D 13.65, (d) t D 15.75,
(e) t D 17.43, and (f ) t D 19.32. The impurity center coordinates are x� D y� D 60.

Figure 7. Snapshots of the functions �.x, y� , t/ (a,c) and �.x� , y, t/ (b,d) for the case �K D 2, v0 D 0.57. In (a,b) the impurity is symmetric, Wx D Wy D 1,
and the curves 1 to 6 are for t D f28.2, 29.04, 29.5, 30.24, 30.72, 31.5g. In (c,d) the impurity is asymmetric, Wx D 1, Wy D 3, and the curves 1 to 6 are for
t D f44.28, 45.6, 45.96, 46.5, 46.86, 48.18g. The impurity center coordinates are x� D y� D 60.

Copyright © 2016 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2016
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Figure 8. The function �.x� , y� , t/ for the case v0 D 0.85, Wx D 1, Wy D 3,�K D 2 (curve 1) and�K D 5 (curve 2).

Figure 9. Snapshots of �.x, y� , t/ (a) and �.x� , y, t/ (b) for Wx D 1, Wy D 1,�K D 2. Curves 1 to 5 correspond to t D f42, 54, 66, 78, 90g.

Figure 10. The dependence of the breathing pulson oscillation frequency!p (a) on the parameter�K for the case Wy D 3 and Wx D 1 (curve 1), Wx D 2 (curve
2), and Wx D 3 (curve 3); (b) on the parameter Wx for the case Wy D 1 and�K D 2 (curve 1),�K D 3 (curve 2), and�K D 4 (curve 3). Kink initial velocity is
v0 D 0.57.

It is well-known that SGE supports the 2D solution called pulson describing long-lived spatially localized vibrations [28–32]. The
numerically found breathing pulson can be well approximated by the expression

�.r, t/ D A arctan

2
64
q

1 � !2
P

!P
sech

�q
1 � !2

P Br

�
sinŒ!P.t � t0/�

3
75 , (19)

where r D
p
.x=�x/2 C .y=�y/2, with�x and�y being the pulson width along x and y axis, respectively. For example, for the curve 1

in Figure 8 one should set in (19) r D 0 and A D 0.42, !P D 0.85, B D 4.8, t0 D 2.5,�x D 2.4, and�y D 3.4.
Our numerical results show that the breathing pulson frequency !P [determined from �.x�, y�, t/] does not depend on kink velocity


0, but it is a function of Wx , Wy and �K . In Figure 10 the dependence of !P on the parameters �K and Wy is shown. It can be seen
that with decrease in the impurity size the breathing pulson frequency (similar to what was observed for the breather) tends to unity.
Dependence of !P on K D 1 ��K can be approximately given by

!P D .a.jK
�j C K//q=

p
1C .a.jK�j C K//2q, (20)

where a is a constant, q � 2, K� is the smallest value of K when breathing pulson is still formed in the vicinity of the impurity. Depen-
dence of !P on Wy (as well as on Wx) can be approximately expressed as !P D 1 � .bWy/

p=
p

1C .bWy/2p, where b is a constant and
p � 2. Maximal breathing pulson amplitude, Amax, as the function of the kink velocity 
0 is presented in Figure 11 and, similarly to the
one-dimensional case, it has a maximum. With decrease in the impurity size Amax vanishes. The dependence Amax.�K/ for small val-
ues of �K is close to linear. The dependence Amax.Wy/ for Wy < 1 is close to linear and for large Wy it saturates. Note that for fixed 
0

maximal value of Amax strongly depends on�K , Wx and Wy .
For increasing values of the parameters �K , Wx and Wy , after the kink passes the impurity, a localized nonlinear wave called here

breathing 2D soliton is excited on the impurity (Figure 12). The breathing 2D soliton shape depends on the parameters Wx and Wy

and it can be symmetric (Figure 13(a) and (b)) or asymmetric (Figure 13(c) and (d)). Our numerical results suggest that the breathing

Copyright © 2016 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2016
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Figure 11. The dependence of the breathing pulson maximum amplitude Amax at the impurity center on the kink velocity v0 for the case Wx D 1,�K D 2, and
Wy D 1 (curve 1), Wy D 2 (curve 2), Wy D 3 (curve 3).

Figure 12. Excitation and evolution of the breathing 2D soliton for the case Wx D 1, Wy D 3,�K D 5. Panels (a) to (f ) correspond to t D f8, 9.4, 11, 14, 20, 26g.
The impurity center coordinates are x� D y� D 60.

Figure 13. Snapshots of the functions �.x, y� , t/ (a,c) and �.x� , y, t/ (b,d) for the case (a,b) Wx D 2, Wy D 2, and t D 30.18 (curve 1), t D 31.8 (curve 2), t D 33.72
(curve3); (c,d) Wx D 2, Wy D 3, and t D 30.78 (curve 1), t D 32.4 (curve 2), t D 34.02 (curve 3). �K D 5, v0 D 0.85. The impurity center coordinates are
x� D y� D 60.

2D soliton is a long-lived excitation with amplitude slowly decreasing in time. The breathing 2D soliton cannot be described by the
direct sum of 2D soliton solution and pulson solution to SGE. On the other hand, the breathing 2D soliton can be well approximated by
the expression

�.r, t/ D arctan

0
B@ A0 C A1 sinŒ!S.t � t0/�

!�1
S

q
1 � !2

S cosh.
q

1 � !2
S Br/

1
CA , (21)

where r D
p
.x=�x/2 C .y=�y/2, B D B0 � B1 sinŒ!S.t � t0/�, !S is breathing 2D soliton frequency, A0, A1, B0, B1 are the breathing

2D soliton parameters that depend on the impurity parameters, �x , �y are the characteristic widths of the soliton along X and Y axis,
respectively. For example, the curve 2 in Figure 8 is well fitted by (21) with r D 0 and A0 D 0.63, A1 D 0.13, B0 D 9, B1 D 1, !S D 0.94,
t0 D 0,�x D 1.8, and�y D 3.2.

Our numerical results have demonstrated that the breathing 2D soliton frequency, !S, similarly to what was observed for the pul-
son, does not depend on the initial kink velocity but is a function of the parameters Wx , Wy and �K (Figure 14). It can be seen that

Copyright © 2016 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2016
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Figure 14. The dependence of the breathing 2D soliton oscillation frequency !s (a) on the parameter�K for the case Wy D 2 and Wx D 2 (curve 1), Wx D 3
(curve 2), Wx D 4 (curve 3); and (b) on the parameter Wy for the case Wx D 1 and�K D 5 (curve 1),�K D 5.5 (curve 2),�K D 6 (curve 3). Initial kink velocity is
v0 D 0.85.

Figure 15. The breathing 2D soliton width �y as the function of the parameter Wy for �K D 5, v0 D 0.85, and Wx D 2 (curve 1), Wx D 3 (curve 2), Wx D 4
(curve 3).

Figure 16. The regions of the impurity parameters allowing the existence of the breathing pulson (above the lines 1, 2 and 3), and the breathing 2D soliton
(below the lines 1, 2 and 3). The lines 1 and 2 present numerical results for Wy D 1 and Wy D 3, respectively, while line 3 is plotted with the help of (14).

!S tends to unity for increasing Wx , Wy and �K . The dependence of !S on K D 1 � �K can be approximated by the expression
!S D .c.jK�j � K//q=

p
1C .c.jK�j � K//2q, where q � 6, c is a constant, and K� is the largest value of K at which the breathing

2D soliton can be formed in the impurity region. The dependence of !S on Wy (as well as on Wx) can be approximately given by
!S D .aWy/

p=
p

1C .aWy/2p, where p � 3, and a is a constant. In Figure 15 for the breathing 2D soliton we present the dependence of
�y on the parameters Wy . It can be seen that �y depends almost linearly on Wy . The relation between parameters describing the size
of impurity and the width of the breathing 2D soliton can be approximately written as

�2
x

W2
x

C
�2

y

W2
y

D R2, (22)

where for the symmetric impurity region R D 23=4, and, in general, parameter R depends on the parameters�K , Wx and Wy .
In Figure 16 we plot the regions of the parameters�K , Wx and Wy where different localized nonlinear excitations exist. It can be seen

that the increase in Wy shifts the critical curves toward the smaller values of the parameters�K and Wx .

4. Conclusions

Using analytical and numerical methods the dynamics of the sine-Gordon equation kinks passing through the attractive impurity was
examined. The cases of extended one-dimensional and two-dimensional impurities were studied.

By linearizing the sine-Gordon equation the dispersion relations for the small-amplitude localized impurity modes were obtained.
Using numerical methods the possibility of excitation by the passing kink of the first even and odd modes of high-amplitude localized
on the impurity modes was demonstrated. The numerically obtained dispersion relations in the case of low oscillation amplitudes are
in a good agreement with the results of analytical calculations.

Copyright © 2016 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2016
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For the case of two-dimensional impurity, the possibility of excitation by the passing kink of non-linear high-amplitude waves of
new type, called here breathing pulson and breathing 2D soliton, was shown numerically. Analytical expressions to model these new
excitations were suggested. The analytical expressions are modified exact solutions to the unperturbed 2D SGE to take into account
damping due to the slow radiation of extended waves. The breathing pulson and breathing 2D soliton are long-lived and can be of
both symmetric and asymmetric type depending on the impurity type. The range of the impurity parameters where the breathing
pulson and breathing 2D soliton can be excited was determined. The amplitude, size and frequency of the excited localized nonlinear
modes as the functions of the impurity parameters were given.

Our study contributes to the understanding of the interaction of the SGE kink with the inhomogeneities in 1D and 2D cases.
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